/* Copyright 2024, Gurobi Optimization, LLC */
/* Assign workers to shifts; each worker may or may not be available on a
particular day. We use Pareto optimization to solve the model:
first, we minimize the linear sum of the slacks. Then, we constrain
the sum of the slacks, and we minimize a quadratic objective that
tries to balance the workload among the workers. */
import com.gurobi.gurobi.*;
public class Workforce4 {
public static void main(String[] args) {
try {
// Sample data
// Sets of days and workers
String Shifts[] =
new String[] { "Mon1", "Tue2", "Wed3", "Thu4", "Fri5", "Sat6",
"Sun7", "Mon8", "Tue9", "Wed10", "Thu11", "Fri12", "Sat13",
"Sun14" };
String Workers[] =
new String[] { "Amy", "Bob", "Cathy", "Dan", "Ed", "Fred", "Gu" };
int nShifts = Shifts.length;
int nWorkers = Workers.length;
// Number of workers required for each shift
double shiftRequirements[] =
new double[] { 3, 2, 4, 4, 5, 6, 5, 2, 2, 3, 4, 6, 7, 5 };
// Worker availability: 0 if the worker is unavailable for a shift
double availability[][] =
new double[][] { { 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1 },
{ 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0 },
{ 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1 },
{ 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1 },
{ 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1 },
{ 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1 },
{ 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 } };
// Model
GRBEnv env = new GRBEnv();
GRBModel model = new GRBModel(env);
model.set(GRB.StringAttr.ModelName, "assignment");
// Assignment variables: x[w][s] == 1 if worker w is assigned
// to shift s. This is no longer a pure assignment model, so we must
// use binary variables.
GRBVar[][] x = new GRBVar[nWorkers][nShifts];
for (int w = 0; w < nWorkers; ++w) {
for (int s = 0; s < nShifts; ++s) {
x[w][s] =
model.addVar(0, availability[w][s], 0, GRB.BINARY,
Workers[w] + "." + Shifts[s]);
}
}
// Slack variables for each shift constraint so that the shifts can
// be satisfied
GRBVar[] slacks = new GRBVar[nShifts];
for (int s = 0; s < nShifts; ++s) {
slacks[s] =
model.addVar(0, GRB.INFINITY, 0, GRB.CONTINUOUS,
Shifts[s] + "Slack");
}
// Variable to represent the total slack
GRBVar totSlack = model.addVar(0, GRB.INFINITY, 0, GRB.CONTINUOUS,
"totSlack");
// Variables to count the total shifts worked by each worker
GRBVar[] totShifts = new GRBVar[nWorkers];
for (int w = 0; w < nWorkers; ++w) {
totShifts[w] = model.addVar(0, GRB.INFINITY, 0, GRB.CONTINUOUS,
Workers[w] + "TotShifts");
}
GRBLinExpr lhs;
// Constraint: assign exactly shiftRequirements[s] workers
// to each shift s, plus the slack
for (int s = 0; s < nShifts; ++s) {
lhs = new GRBLinExpr();
lhs.addTerm(1.0, slacks[s]);
for (int w = 0; w < nWorkers; ++w) {
lhs.addTerm(1.0, x[w][s]);
}
model.addConstr(lhs, GRB.EQUAL, shiftRequirements[s], Shifts[s]);
}
// Constraint: set totSlack equal to the total slack
lhs = new GRBLinExpr();
lhs.addTerm(-1.0, totSlack);
for (int s = 0; s < nShifts; ++s) {
lhs.addTerm(1.0, slacks[s]);
}
model.addConstr(lhs, GRB.EQUAL, 0, "totSlack");
// Constraint: compute the total number of shifts for each worker
for (int w = 0; w < nWorkers; ++w) {
lhs = new GRBLinExpr();
lhs.addTerm(-1.0, totShifts[w]);
for (int s = 0; s < nShifts; ++s) {
lhs.addTerm(1.0, x[w][s]);
}
model.addConstr(lhs, GRB.EQUAL, 0, "totShifts" + Workers[w]);
}
// Objective: minimize the total slack
GRBLinExpr obj = new GRBLinExpr();
obj.addTerm(1.0, totSlack);
model.setObjective(obj);
// Optimize
int status =
solveAndPrint(model, totSlack, nWorkers, Workers, totShifts);
if (status != GRB.Status.OPTIMAL ) {
return;
}
// Constrain the slack by setting its upper and lower bounds
totSlack.set(GRB.DoubleAttr.UB, totSlack.get(GRB.DoubleAttr.X));
totSlack.set(GRB.DoubleAttr.LB, totSlack.get(GRB.DoubleAttr.X));
// Variable to count the average number of shifts worked
GRBVar avgShifts =
model.addVar(0, GRB.INFINITY, 0, GRB.CONTINUOUS, "avgShifts");
// Variables to count the difference from average for each worker;
// note that these variables can take negative values.
GRBVar[] diffShifts = new GRBVar[nWorkers];
for (int w = 0; w < nWorkers; ++w) {
diffShifts[w] = model.addVar(-GRB.INFINITY, GRB.INFINITY, 0,
GRB.CONTINUOUS, Workers[w] + "Diff");
}
// Constraint: compute the average number of shifts worked
lhs = new GRBLinExpr();
lhs.addTerm(-nWorkers, avgShifts);
for (int w = 0; w < nWorkers; ++w) {
lhs.addTerm(1.0, totShifts[w]);
}
model.addConstr(lhs, GRB.EQUAL, 0, "avgShifts");
// Constraint: compute the difference from the average number of shifts
for (int w = 0; w < nWorkers; ++w) {
lhs = new GRBLinExpr();
lhs.addTerm(-1, diffShifts[w]);
lhs.addTerm(-1, avgShifts);
lhs.addTerm( 1, totShifts[w]);
model.addConstr(lhs, GRB.EQUAL, 0, Workers[w] + "Diff");
}
// Objective: minimize the sum of the square of the difference from the
// average number of shifts worked
GRBQuadExpr qobj = new GRBQuadExpr();
for (int w = 0; w < nWorkers; ++w) {
qobj.addTerm(1.0, diffShifts[w], diffShifts[w]);
}
model.setObjective(qobj);
// Optimize
status =
solveAndPrint(model, totSlack, nWorkers, Workers, totShifts);
if (status != GRB.Status.OPTIMAL ) {
return;
}
// Dispose of model and environment
model.dispose();
env.dispose();
} catch (GRBException e) {
System.out.println("Error code: " + e.getErrorCode() + ". " +
e.getMessage());
}
}
private static int solveAndPrint(GRBModel model, GRBVar totSlack,
int nWorkers, String[] Workers,
GRBVar[] totShifts) throws GRBException {
model.optimize();
int status = model.get(GRB.IntAttr.Status);
if (status == GRB.Status.INF_OR_UNBD ||
status == GRB.Status.INFEASIBLE ||
status == GRB.Status.UNBOUNDED ) {
System.out.println("The model cannot be solved "
+ "because it is infeasible or unbounded");
return status;
}
if (status != GRB.Status.OPTIMAL ) {
System.out.println("Optimization was stopped with status " + status);
return status;
}
// Print total slack and the number of shifts worked for each worker
System.out.println("\nTotal slack required: " +
totSlack.get(GRB.DoubleAttr.X));
for (int w = 0; w < nWorkers; ++w) {
System.out.println(Workers[w] + " worked " +
totShifts[w].get(GRB.DoubleAttr.X) + " shifts");
}
System.out.println("\n");
return status;
}
}