bilinear_c++.cpp#
/* Copyright 2024, Gurobi Optimization, LLC */
/* This example formulates and solves the following simple bilinear model:
maximize x
subject to x + y + z <= 10
x * y <= 2 (bilinear inequality)
x * z + y * z == 1 (bilinear equality)
x, y, z non-negative (x integral in second version)
*/
#include <cassert>
#include "gurobi_c++.h"
using namespace std;
int
main(int argc,
char *argv[])
{
try {
GRBEnv env = GRBEnv();
GRBModel model = GRBModel(env);
// Create variables
GRBVar x = model.addVar(0.0, GRB_INFINITY, 0.0, GRB_CONTINUOUS, "x");
GRBVar y = model.addVar(0.0, GRB_INFINITY, 0.0, GRB_CONTINUOUS, "y");
GRBVar z = model.addVar(0.0, GRB_INFINITY, 0.0, GRB_CONTINUOUS, "z");
// Set objective
GRBLinExpr obj = x;
model.setObjective(obj, GRB_MAXIMIZE);
// Add linear constraint: x + y + z <= 10
model.addConstr(x + y + z <= 10, "c0");
// Add bilinear inequality constraint: x * y <= 2
model.addQConstr(x*y <= 2, "bilinear0");
// Add bilinear equality constraint: y * z == 1
model.addQConstr(x*z + y*z == 1, "bilinear1");
// Optimize model
model.optimize();
cout << x.get(GRB_StringAttr_VarName) << " "
<< x.get(GRB_DoubleAttr_X) << endl;
cout << y.get(GRB_StringAttr_VarName) << " "
<< y.get(GRB_DoubleAttr_X) << endl;
cout << z.get(GRB_StringAttr_VarName) << " "
<< z.get(GRB_DoubleAttr_X) << endl;
// Constrain x to be integral and solve again
x.set(GRB_CharAttr_VType, GRB_INTEGER);
model.optimize();
cout << x.get(GRB_StringAttr_VarName) << " "
<< x.get(GRB_DoubleAttr_X) << endl;
cout << y.get(GRB_StringAttr_VarName) << " "
<< y.get(GRB_DoubleAttr_X) << endl;
cout << z.get(GRB_StringAttr_VarName) << " "
<< z.get(GRB_DoubleAttr_X) << endl;
cout << "Obj: " << model.get(GRB_DoubleAttr_ObjVal) << endl;
} catch(GRBException e) {
cout << "Error code = " << e.getErrorCode() << endl;
cout << e.getMessage() << endl;
} catch(...) {
cout << "Exception during optimization" << endl;
}
return 0;
}