/* Copyright 2024, Gurobi Optimization, LLC */
/* This example formulates and solves the following simple QP model:
minimize x + y + x^2 + x*y + y^2 + y*z + z^2
subject to x + 2 y + 3 z >= 4
x + y >= 1
x, y, z non-negative
The example illustrates the use of dense matrices to store A and Q
(and dense vectors for the other relevant data). We don't recommend
that you use dense matrices, but this example may be helpful if you
already have your data in this format.
*/
#include "gurobi_c++.h"
using namespace std;
static bool
dense_optimize(GRBEnv* env,
int rows,
int cols,
double* c, /* linear portion of objective function */
double* Q, /* quadratic portion of objective function */
double* A, /* constraint matrix */
char* sense, /* constraint senses */
double* rhs, /* RHS vector */
double* lb, /* variable lower bounds */
double* ub, /* variable upper bounds */
char* vtype, /* variable types (continuous, binary, etc.) */
double* solution,
double* objvalP)
{
GRBModel model = GRBModel(*env);
int i, j;
bool success = false;
/* Add variables to the model */
GRBVar* vars = model.addVars(lb, ub, NULL, vtype, NULL, cols);
/* Populate A matrix */
for (i = 0; i < rows; i++) {
GRBLinExpr lhs = 0;
for (j = 0; j < cols; j++)
if (A[i*cols+j] != 0)
lhs += A[i*cols+j]*vars[j];
model.addConstr(lhs, sense[i], rhs[i]);
}
GRBQuadExpr obj = 0;
for (j = 0; j < cols; j++)
obj += c[j]*vars[j];
for (i = 0; i < cols; i++)
for (j = 0; j < cols; j++)
if (Q[i*cols+j] != 0)
obj += Q[i*cols+j]*vars[i]*vars[j];
model.setObjective(obj);
model.optimize();
model.write("dense.lp");
if (model.get(GRB_IntAttr_Status) == GRB_OPTIMAL) {
*objvalP = model.get(GRB_DoubleAttr_ObjVal);
for (i = 0; i < cols; i++)
solution[i] = vars[i].get(GRB_DoubleAttr_X);
success = true;
}
delete[] vars;
return success;
}
int
main(int argc,
char *argv[])
{
GRBEnv* env = 0;
try {
env = new GRBEnv();
double c[] = {1, 1, 0};
double Q[3][3] = {{1, 1, 0}, {0, 1, 1}, {0, 0, 1}};
double A[2][3] = {{1, 2, 3}, {1, 1, 0}};
char sense[] = {'>', '>'};
double rhs[] = {4, 1};
double lb[] = {0, 0, 0};
bool success;
double objval, sol[3];
success = dense_optimize(env, 2, 3, c, &Q[0][0], &A[0][0], sense, rhs,
lb, NULL, NULL, sol, &objval);
cout << "optimal=" << success << " x: " << sol[0] << " y: " << sol[1] << " z: " << sol[2] << endl;
} catch(GRBException e) {
cout << "Error code = " << e.getErrorCode() << endl;
cout << e.getMessage() << endl;
} catch(...) {
cout << "Exception during optimization" << endl;
}
delete env;
return 0;
}