fixanddive.py#
#!/usr/bin/env python3.11
# Copyright 2024, Gurobi Optimization, LLC
# Implement a simple MIP heuristic. Relax the model,
# sort variables based on fractionality, and fix the 25% of
# the fractional variables that are closest to integer variables.
# Repeat until either the relaxation is integer feasible or
# linearly infeasible.
import sys
import gurobipy as gp
from gurobipy import GRB
# Key function used to sort variables based on relaxation fractionality
def sortkey(v1):
sol = v1.X
return abs(sol - int(sol + 0.5))
if len(sys.argv) < 2:
print("Usage: fixanddive.py filename")
sys.exit(0)
# Read model
model = gp.read(sys.argv[1])
# Collect integer variables and relax them
intvars = []
for v in model.getVars():
if v.VType != GRB.CONTINUOUS:
intvars += [v]
v.VType = GRB.CONTINUOUS
model.Params.OutputFlag = 0
model.optimize()
# Perform multiple iterations. In each iteration, identify the first
# quartile of integer variables that are closest to an integer value in the
# relaxation, fix them to the nearest integer, and repeat.
for iter in range(1000):
# create a list of fractional variables, sorted in order of increasing
# distance from the relaxation solution to the nearest integer value
fractional = []
for v in intvars:
sol = v.X
if abs(sol - int(sol + 0.5)) > 1e-5:
fractional += [v]
fractional.sort(key=sortkey)
print(f"Iteration {iter}, obj {model.ObjVal:g}, fractional {len(fractional)}")
if len(fractional) == 0:
print(f"Found feasible solution - objective {model.ObjVal:g}")
break
# Fix the first quartile to the nearest integer value
nfix = max(int(len(fractional) / 4), 1)
for i in range(nfix):
v = fractional[i]
fixval = int(v.X + 0.5)
v.LB = fixval
v.UB = fixval
print(f" Fix {v.VarName} to {fixval:g} (rel {v.X:g})")
model.optimize()
# Check optimization result
if model.Status != GRB.OPTIMAL:
print("Relaxation is infeasible")
break