# Copyright 2024, Gurobi Optimization, LLC
#
# Assign workers to shifts; each worker may or may not be available on a
# particular day. We use Pareto optimization to solve the model:
# first, we minimize the linear sum of the slacks. Then, we constrain
# the sum of the slacks, and we minimize a quadratic objective that
# tries to balance the workload among the workers.
library(Matrix)
library(gurobi)
# define data
nShifts <- 14
nWorkers <- 7
nVars <- (nShifts + 1) * (nWorkers + 1) + nWorkers + 1
varIdx <- function(w,s) {s+(w-1)*nShifts}
shiftSlackIdx <- function(s) {s+nShifts*nWorkers}
totShiftIdx <- function(w) {w + nShifts * (nWorkers+1)}
avgShiftIdx <- ((nShifts+1)*(nWorkers+1))
diffShiftIdx <- function(w) {w + avgShiftIdx}
totalSlackIdx <- nVars
Shifts <- c('Mon1', 'Tue2', 'Wed3', 'Thu4', 'Fri5', 'Sat6', 'Sun7',
'Mon8', 'Tue9', 'Wed10', 'Thu11', 'Fri12', 'Sat13', 'Sun14')
Workers <- c( 'Amy', 'Bob', 'Cathy', 'Dan', 'Ed', 'Fred', 'Gu' )
shiftRequirements <- c(3, 2, 4, 4, 5, 6, 5, 2, 2, 3, 4, 6, 7, 5 )
availability <- list( c( 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1 ),
c( 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0 ),
c( 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1 ),
c( 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1 ),
c( 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1 ),
c( 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1 ),
c( 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ) )
# Function to display results
solveandprint <- function(model, params) {
result <- gurobi(model, params = params)
if(result$status == 'OPTIMAL') {
cat('The optimal objective is',result$objval,'\n')
cat('Schedule:\n')
for (s in 1:nShifts) {
cat('\t',Shifts[s],':')
for (w in 1:nWorkers) {
if (result$x[varIdx(w,s)] > 0.9) cat(Workers[w],' ')
}
cat('\n')
}
cat('Workload:\n')
for (w in 1:nWorkers) {
cat('\t',Workers[w],':',result$x[totShiftIdx(w)],'\n')
}
} else {
cat('Optimization finished with status',result$status)
}
result
}
# Set up parameters
params <- list()
params$logfile <- 'workforce4.log'
# Build model
model <- list()
model$modelname <- 'workforce4'
model$modelsense <- 'min'
# Initialize assignment decision variables:
# x[w][s] == 1 if worker w is assigned to shift s.
# This is no longer a pure assignment model, so we must
# use binary variables.
model$vtype <- rep('C', nVars)
model$lb <- rep(0, nVars)
model$ub <- rep(1, nVars)
model$obj <- rep(0, nVars)
model$varnames <- rep('',nVars)
for (w in 1:nWorkers) {
for (s in 1:nShifts) {
model$vtype[varIdx(w,s)] = 'B'
model$varnames[varIdx(w,s)] = paste0(Workers[w],'.',Shifts[s])
if (availability[[w]][s] == 0) model$ub[varIdx(w,s)] = 0
}
}
# Initialize shift slack variables
for (s in 1:nShifts) {
model$varnames[shiftSlackIdx(s)] = paste0('ShiftSlack',Shifts[s])
model$ub[shiftSlackIdx(s)] = Inf
}
# Initialize worker slack and diff variables
for (w in 1:nWorkers) {
model$varnames[totShiftIdx(w)] = paste0('TotalShifts',Workers[w])
model$ub[totShiftIdx(w)] = Inf
model$varnames[diffShiftIdx(w)] = paste0('DiffShifts',Workers[w])
model$ub[diffShiftIdx(w)] = Inf
model$lb[diffShiftIdx(w)] = -Inf
}
#Initialize average shift variable
model$ub[avgShiftIdx] = Inf
model$varnames[avgShiftIdx] = 'AvgShift'
#Initialize total slack variable
model$ub[totalSlackIdx] = Inf
model$varnames[totalSlackIdx] = 'TotalSlack'
model$obj[totalSlackIdx] = 1
# Set up shift-requirements constraints
model$A <- spMatrix(nShifts,nVars,
i = c(c(mapply(rep,1:nShifts,nWorkers)),
c(1:nShifts)),
j = c(mapply(varIdx,1:nWorkers,
mapply(rep,1:nShifts,nWorkers)),
shiftSlackIdx(1:nShifts)),
x = rep(1,nShifts * (nWorkers+1)))
model$sense <- rep('=',nShifts)
model$rhs <- shiftRequirements
model$constrnames <- Shifts
# Set TotalSlack equal to the sum of each shift slack
B <- spMatrix(1, nVars,
i = rep(1,nShifts+1),
j = c(shiftSlackIdx(1:nShifts),totalSlackIdx),
x = c(rep(1,nShifts),-1))
model$A <- rbind(model$A, B)
model$rhs <- c(model$rhs,0)
model$sense <- c(model$sense,'=')
model$constrnames <- c(model$constrnames, 'TotalSlack')
# Set total number of shifts for each worker
B <- spMatrix(nWorkers, nVars,
i = c(mapply(rep,1:nWorkers,nShifts),
1:nWorkers),
j = c(mapply(varIdx,c(mapply(rep,1:nWorkers,nShifts)),1:nShifts),
totShiftIdx(1:nWorkers)),
x = c(rep(1,nShifts*nWorkers),rep(-1,nWorkers)))
model$A <- rbind(model$A, B)
model$rhs <- c(model$rhs,rep(0,nWorkers))
model$sense <- c(model$sense,rep('=',nWorkers))
model$constrnames <- c(model$constrnames, sprintf('TotalShifts%s',Workers[1:nWorkers]))
# Save initial model
gurobi_write(model,'workforce4.lp', params)
# Optimize
result <- solveandprint(model, params)
if (result$status != 'OPTIMAL') stop('Stop now\n')
# Constraint the slack by setting its upper and lower bounds
totalSlack <- result$x[totalSlackIdx]
model$lb[totalSlackIdx] = totalSlack
model$ub[totalSlackIdx] = totalSlack
# Link average number of shifts worked and difference with average
B <- spMatrix(nWorkers+1, nVars,
i = c(1:nWorkers,
1:nWorkers,
1:nWorkers,
rep(nWorkers+1,nWorkers+1)),
j = c(totShiftIdx(1:nWorkers),
diffShiftIdx(1:nWorkers),
rep(avgShiftIdx,nWorkers),
totShiftIdx(1:nWorkers),avgShiftIdx),
x = c(rep(1, nWorkers),
rep(-1,nWorkers),
rep(-1,nWorkers),
rep(1,nWorkers),-nWorkers))
model$A <- rbind(model$A, B)
model$rhs <- c(model$rhs,rep(0,nWorkers+1))
model$sense <- c(model$sense,rep('=',nWorkers+1))
model$constrnames <- c(model$constrnames,
sprintf('DiffShifts%s',Workers[1:nWorkers]),
'AvgShift')
# Objective: minimize the sum of the square of the difference from the
# average number of shifts worked
model$obj <- 0
model$Q <- spMatrix(nVars,nVars,
i = c(diffShiftIdx(1:nWorkers)),
j = c(diffShiftIdx(1:nWorkers)),
x = rep(1,nWorkers))
# Save modified model
gurobi_write(model,'workforce4b.lp', params)
# Optimize
result <- solveandprint(model, params)
if (result$status != 'OPTIMAL') stop('Stop now\n')
#Clear space
rm(model, params, availability, Shifts, Workers, shiftRequirements, result)