/* Copyright 2025, Gurobi Optimization, LLC */
/* This example formulates and solves the following simple nonlinear model:
minimize y1 + y2
subject to y1 = x2 ^2
y2 = sin(2.5 * x1) + x2
y1, y2 free
-1 <= x1, x2 <= 1
*/
using System;
using Gurobi;
class mip1_cs
{
static void Main()
{
try {
// Create environment
GRBEnv env = new GRBEnv("genconstrnl.log");
// Create empty model
GRBModel model = new GRBModel(env);
// Create variables, only y variables have an objective coefficient
GRBVar y1 = model.AddVar(-GRB.INFINITY, GRB.INFINITY, 1.0, GRB.CONTINUOUS,
"y1");
GRBVar y2 = model.AddVar(-GRB.INFINITY, GRB.INFINITY, 1.0, GRB.CONTINUOUS,
"y2");
GRBVar x1 = model.AddVar(-1.0, 1.0, 0.0, GRB.CONTINUOUS, "x1");
GRBVar x2 = model.AddVar(-1.0, 1.0, 0.0, GRB.CONTINUOUS, "x2");
// Array representation of first expression tree for x2 ^2
int[] opcode1 = {GRB.OPCODE_POW, GRB.OPCODE_VARIABLE, GRB.OPCODE_CONSTANT};
double[] data1 = {-1.0, x2.Index, 2.0};
int[] parent1 = {-1, 0, 0};
// Add first nonlinear constraint y1 = x2 ^2
model.AddGenConstrNL(y1, opcode1, data1, parent1, "univariate_constraint");
// Array representation of second expression tree for sin(2.5 * x1) + x2
int[] opcode2 = {GRB.OPCODE_PLUS, GRB.OPCODE_SIN, GRB.OPCODE_MULTIPLY,
GRB.OPCODE_CONSTANT, GRB.OPCODE_VARIABLE,
GRB.OPCODE_VARIABLE};
double[] data2 = {-1.0, -1.0, -1.0, 2.5, x1.Index, x2.Index};
int[] parent2 = {-1, 0, 1, 2, 2, 0};
// Add second nonlinear constraint y2 = sin(2.5 * x1) + x2
model.AddGenConstrNL(y2, opcode2, data2, parent2, "multivariate_constraint");
// Optimize model
model.Optimize();
Console.WriteLine(y1.VarName + " " + y1.X);
Console.WriteLine(y2.VarName + " " + y2.X);
Console.WriteLine(x1.VarName + " " + x1.X);
Console.WriteLine(x2.VarName + " " + x2.X);
Console.WriteLine("Obj: " + model.ObjVal);
// Dispose of model and env
model.Dispose();
env.Dispose();
} catch (GRBException e) {
Console.WriteLine("Error code: " + e.ErrorCode + ". " + e.Message);
}
}
}