#!/usr/bin/env python3.11
# Copyright 2024, Gurobi Optimization, LLC
# In this example we show the use of general constraints for modeling
# some common expressions. We use as an example a SAT-problem where we
# want to see if it is possible to satisfy at least four (or all) clauses
# of the logical form
#
# L = (x0 or ~x1 or x2) and (x1 or ~x2 or x3) and
# (x2 or ~x3 or x0) and (x3 or ~x0 or x1) and
# (~x0 or ~x1 or x2) and (~x1 or ~x2 or x3) and
# (~x2 or ~x3 or x0) and (~x3 or ~x0 or x1)
#
# We do this by introducing two variables for each literal (itself and its
# negated value), one variable for each clause, one variable indicating
# whether we can satisfy at least four clauses, and one last variable to
# identify the minimum of the clauses (so if it is one, we can satisfy all
# clauses). Then we put these last two variables in the objective.
# The objective function is therefore
#
# maximize Obj0 + Obj1
#
# Obj0 = MIN(Clause1, ... , Clause8)
# Obj1 = 1 -> Clause1 + ... + Clause8 >= 4
#
# thus, the objective value will be two if and only if we can satisfy all
# clauses; one if and only if at least four but not all clauses can be satisfied,
# and zero otherwise.
import gurobipy as gp
from gurobipy import GRB
import sys
try:
NLITERALS = 4
n = NLITERALS
# Example data:
# e.g. {0, n+1, 2} means clause (x0 or ~x1 or x2)
Clauses = [
[0, n + 1, 2],
[1, n + 2, 3],
[2, n + 3, 0],
[3, n + 0, 1],
[n + 0, n + 1, 2],
[n + 1, n + 2, 3],
[n + 2, n + 3, 0],
[n + 3, n + 0, 1],
]
# Create a new model
model = gp.Model("Genconstr")
# initialize decision variables and objective
Lit = model.addVars(NLITERALS, vtype=GRB.BINARY, name="X")
NotLit = model.addVars(NLITERALS, vtype=GRB.BINARY, name="NotX")
Cla = model.addVars(len(Clauses), vtype=GRB.BINARY, name="Clause")
Obj0 = model.addVar(vtype=GRB.BINARY, name="Obj0")
Obj1 = model.addVar(vtype=GRB.BINARY, name="Obj1")
# Link Xi and notXi
model.addConstrs(
(Lit[i] + NotLit[i] == 1.0 for i in range(NLITERALS)), name="CNSTR_X"
)
# Link clauses and literals
for i, c in enumerate(Clauses):
clause = []
for l in c:
if l >= n:
clause.append(NotLit[l - n])
else:
clause.append(Lit[l])
model.addConstr(Cla[i] == gp.or_(clause), "CNSTR_Clause" + str(i))
# Link objs with clauses
model.addConstr(Obj0 == gp.min_(Cla), name="CNSTR_Obj0")
model.addConstr((Obj1 == 1) >> (Cla.sum() >= 4.0), name="CNSTR_Obj1")
# Set optimization objective
model.setObjective(Obj0 + Obj1, GRB.MAXIMIZE)
# Save problem
model.write("genconstr.mps")
model.write("genconstr.lp")
# Optimize
model.optimize()
# Status checking
status = model.getAttr(GRB.Attr.Status)
if status in (GRB.INF_OR_UNBD, GRB.INFEASIBLE, GRB.UNBOUNDED):
print("The model cannot be solved because it is infeasible or unbounded")
sys.exit(1)
if status != GRB.OPTIMAL:
print("Optimization was stopped with status ", status)
sys.exit(1)
# Print result
objval = model.getAttr(GRB.Attr.ObjVal)
if objval > 1.9:
print("Logical expression is satisfiable")
elif objval > 0.9:
print("At least four clauses can be satisfied")
else:
print("Not even three clauses can be satisfied")
except gp.GurobiError as e:
print(f"Error code {e.errno}: {e}")
except AttributeError:
print("Encountered an attribute error")