Matrix Examples#
This section includes source code for all of the Gurobi matrix examples.
The same source code can be found in the examples
directory of the
Gurobi distribution.
matrix1#
#!/usr/bin/env python3.11
# Copyright 2024, Gurobi Optimization, LLC
# This example formulates and solves the following simple MIP model
# using the matrix API:
# maximize
# x + y + 2 z
# subject to
# x + 2 y + 3 z <= 4
# x + y >= 1
# x, y, z binary
import gurobipy as gp
from gurobipy import GRB
import numpy as np
import scipy.sparse as sp
try:
# Create a new model
m = gp.Model("matrix1")
# Create variables
x = m.addMVar(shape=3, vtype=GRB.BINARY, name="x")
# Set objective
obj = np.array([1.0, 1.0, 2.0])
m.setObjective(obj @ x, GRB.MAXIMIZE)
# Build (sparse) constraint matrix
val = np.array([1.0, 2.0, 3.0, -1.0, -1.0])
row = np.array([0, 0, 0, 1, 1])
col = np.array([0, 1, 2, 0, 1])
A = sp.csr_matrix((val, (row, col)), shape=(2, 3))
# Build rhs vector
rhs = np.array([4.0, -1.0])
# Add constraints
m.addConstr(A @ x <= rhs, name="c")
# Optimize model
m.optimize()
print(x.X)
print(f"Obj: {m.ObjVal:g}")
except gp.GurobiError as e:
print(f"Error code {e.errno}: {e}")
except AttributeError:
print("Encountered an attribute error")
matrix2#
#!/usr/bin/env python3.11
# Copyright 2024, Gurobi Optimization, LLC
# This example uses the matrix friendly API to formulate the n-queens
# problem; it maximizes the number queens placed on an n x n
# chessboard without threatening each other.
#
# This example demonstrates slicing on MVar objects.
import numpy as np
import gurobipy as gp
from gurobipy import GRB
n = 8
m = gp.Model("nqueens")
# n-by-n binary variables; x[i, j] decides whether a queen is placed at
# position (i, j)
x = m.addMVar((n, n), vtype=GRB.BINARY, name="x")
# Maximize the number of placed queens
m.setObjective(x.sum(), GRB.MAXIMIZE)
# At most one queen per row; this adds n linear constraints
m.addConstr(x.sum(axis=1) <= 1, name="row")
# At most one queen per column; this adds n linear constraints
m.addConstr(x.sum(axis=0) <= 1, name="col")
for i in range(-n + 1, n):
# At most one queen on diagonal i
m.addConstr(x.diagonal(i).sum() <= 1, name=f"diag{i:d}")
# At most one queen on anti-diagonal i
m.addConstr(x[:, ::-1].diagonal(i).sum() <= 1, name=f"adiag{i:d}")
# Solve the problem
m.optimize()
print(x.X)
print(f"Queens placed: {m.ObjVal:.0f}")