Multi-scenario Examples#
This section includes source code for all of the Gurobi multi-scenario examples.
The same source code can be found in the examples directory of the
Gurobi distribution.
/* Copyright 2025, Gurobi Optimization, LLC */
/* Facility location: a company currently ships its product from 5 plants
   to 4 warehouses. It is considering closing some plants to reduce
   costs. What plant(s) should the company close, in order to minimize
   transportation and fixed costs?
   Since the plant fixed costs and the warehouse demands are uncertain, a
   scenario approach is chosen.
   Note that this example is similar to the facility_c.c example. Here we
   added scenarios in order to illustrate the multi-scenario feature.
   Based on an example from Frontline Systems:
   http://www.solver.com/disfacility.htm
   Used with permission.
 */
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "gurobi_c.h"
#define opencol(p)         p
#define transportcol(w,p)  nPlants*(w+1)+p
#define demandconstr(w)    nPlants+w
#define MAXSTR             128
int
main(int   argc,
     char *argv[])
{
  GRBenv   *env      = NULL;
  GRBenv   *modelenv = NULL;
  GRBmodel *model    = NULL;
  double  *cval         = NULL;
  double  *rhs          = NULL;
  int     *cbeg         = NULL;
  int     *cind         = NULL;
  char   **cname        = NULL;
  char    *sense        = NULL;
  double maxFixed = -GRB_INFINITY;
  double minFixed = GRB_INFINITY;
  int    cnamect  = 0;
  int    error    = 0;
  int    p, s, w, col;
  int    idx, rowct;
  int    nScenarios;
  char   vname[MAXSTR];
  /* Number of plants, warehouses and scenarios */
  const int nPlants     = 5;
  const int nWarehouses = 4;
  /* Warehouse demand in thousands of units */
  double Demand[] = { 15, 18, 14, 20 };
  /* Plant capacity in thousands of units */
  double Capacity[] = { 20, 22, 17, 19, 18 };
  /* Fixed costs for each plant */
  double FixedCosts[] =
    { 12000, 15000, 17000, 13000, 16000 };
  /* Transportation costs per thousand units */
  double TransCosts[4][5] = {
    { 4000, 2000, 3000, 2500, 4500 },
    { 2500, 2600, 3400, 3000, 4000 },
    { 1200, 1800, 2600, 4100, 3000 },
    { 2200, 2600, 3100, 3700, 3200 }
  };
  /* Compute minimal and maximal fixed cost */
  for (p = 0; p < nPlants; p++) {
    if (FixedCosts[p] > maxFixed)
      maxFixed = FixedCosts[p];
    if (FixedCosts[p] < minFixed)
      minFixed = FixedCosts[p];
  }
  /* Create environment */
  error = GRBloadenv(&env, "multiscenario.log");
  if (error) goto QUIT;
  /* Create initial model */
  error = GRBnewmodel(env, &model, "multiscenario", nPlants * (nWarehouses + 1),
                      NULL, NULL, NULL, NULL, NULL);
  if (error) goto QUIT;
  modelenv = GRBgetenv(model);
  /* Initialize decision variables for plant open variables */
  for (p = 0; p < nPlants; p++) {
    col = opencol(p);
    error = GRBsetcharattrelement(model, GRB_CHAR_ATTR_VTYPE,
                                  col, GRB_BINARY);
    if (error) goto QUIT;
    error = GRBsetdblattrelement(model, GRB_DBL_ATTR_OBJ,
                                 col, FixedCosts[p]);
    if (error) goto QUIT;
    sprintf(vname, "Open%i", p);
    error = GRBsetstrattrelement(model, GRB_STR_ATTR_VARNAME,
                                 col, vname);
    if (error) goto QUIT;
  }
  /* Initialize decision variables for transportation decision variables:
     how much to transport from a plant p to a warehouse w */
  for (w = 0; w < nWarehouses; w++) {
    for (p = 0; p < nPlants; p++) {
      col = transportcol(w, p);
      error = GRBsetdblattrelement(model, GRB_DBL_ATTR_OBJ,
                                   col, TransCosts[w][p]);
      if (error) goto QUIT;
      sprintf(vname, "Trans%i.%i", p, w);
      error = GRBsetstrattrelement(model, GRB_STR_ATTR_VARNAME,
                                   col, vname);
      if (error) goto QUIT;
    }
  }
  /* The objective is to minimize the total fixed and variable costs */
  error = GRBsetintattr(model, GRB_INT_ATTR_MODELSENSE, GRB_MINIMIZE);
  if (error) goto QUIT;
  /* Make space for constraint data */
  rowct = (nPlants > nWarehouses) ? nPlants : nWarehouses;
  cbeg = malloc(sizeof(int) * rowct);
  if (!cbeg) goto QUIT;
  cind = malloc(sizeof(int) * (nPlants * (nWarehouses + 1)));
  if (!cind) goto QUIT;
  cval = malloc(sizeof(double) * (nPlants * (nWarehouses + 1)));
  if (!cval) goto QUIT;
  rhs = malloc(sizeof(double) * rowct);
  if (!rhs) goto QUIT;
  sense = malloc(sizeof(char) * rowct);
  if (!sense) goto QUIT;
  cname = calloc(rowct, sizeof(char*));
  if (!cname) goto QUIT;
  /* Production constraints
     Note that the limit sets the production to zero if
     the plant is closed */
  idx = 0;
  for (p = 0; p < nPlants; p++) {
    cbeg[p] = idx;
    rhs[p] = 0.0;
    sense[p] = GRB_LESS_EQUAL;
    cname[p] = malloc(sizeof(char) * MAXSTR);
    if (!cname[p]) goto QUIT;
    cnamect++;
    sprintf(cname[p], "Capacity%i", p);
    for (w = 0; w < nWarehouses; w++) {
      cind[idx] = transportcol(w, p);
      cval[idx++] = 1.0;
    }
    cind[idx] = opencol(p);
    cval[idx++] = -Capacity[p];
  }
  error = GRBaddconstrs(model, nPlants, idx, cbeg, cind, cval, sense,
                        rhs, cname);
  if (error) goto QUIT;
  /* Demand constraints */
  idx = 0;
  for (w = 0; w < nWarehouses; w++) {
    cbeg[w] = idx;
    sense[w] = GRB_EQUAL;
    sprintf(cname[w], "Demand%i", w);
    for (p = 0; p < nPlants; p++) {
      cind[idx] = transportcol(w, p);
      cval[idx++] = 1.0;
    }
  }
  error = GRBaddconstrs(model, nWarehouses, idx, cbeg, cind, cval, sense,
                        Demand, cname);
  if (error) goto QUIT;
  /* We constructed the base model, now we add 7 scenarios
     Scenario 0: Represents the base model, hence, no manipulations.
     Scenario 1: Manipulate the warehouses demands slightly (constraint right
                 hand sides).
     Scenario 2: Double the warehouses demands (constraint right hand sides).
     Scenario 3: Manipulate the plant fixed costs (objective coefficients).
     Scenario 4: Manipulate the warehouses demands and fixed costs.
     Scenario 5: Force the plant with the largest fixed cost to stay open
                 (variable bounds).
     Scenario 6: Force the plant with the smallest fixed cost to be closed
                 (variable bounds). */
  error = GRBsetintattr(model, GRB_INT_ATTR_NUMSCENARIOS, 7);
  if (error) goto QUIT;
  /* Scenario 0: Base model, hence, nothing to do except giving the
                 scenario a name */
  error = GRBsetintparam(modelenv, GRB_INT_PAR_SCENARIONUMBER, 0);
  if (error) goto QUIT;
  error = GRBsetstrattr(model, GRB_STR_ATTR_SCENNNAME, "Base model");
  if (error) goto QUIT;
  /* Scenario 1: Increase the warehouse demands by 10% */
  error = GRBsetintparam(modelenv, GRB_INT_PAR_SCENARIONUMBER, 1);
  if (error) goto QUIT;
  error = GRBsetstrattr(model, GRB_STR_ATTR_SCENNNAME,
                        "Increased warehouse demands");
  if (error) goto QUIT;
  for (w = 0; w < nWarehouses; w++) {
    error = GRBsetdblattrelement(model, GRB_DBL_ATTR_SCENNRHS,
                                 demandconstr(w), Demand[w] * 1.1);
    if (error) goto QUIT;
  }
  /* Scenario 2: Double the warehouse demands */
  error = GRBsetintparam(modelenv, GRB_INT_PAR_SCENARIONUMBER, 2);
  if (error) goto QUIT;
  error = GRBsetstrattr(model, GRB_STR_ATTR_SCENNNAME,
                        "Double the warehouse demands");
  if (error) goto QUIT;
  for (w = 0; w < nWarehouses; w++) {
    error = GRBsetdblattrelement(model, GRB_DBL_ATTR_SCENNRHS,
                                 demandconstr(w), Demand[w] * 2.0);
    if (error) goto QUIT;
  }
  /* Scenario 3: Decrease the plant fixed costs by 5% */
  error = GRBsetintparam(modelenv, GRB_INT_PAR_SCENARIONUMBER, 3);
  if (error) goto QUIT;
  error = GRBsetstrattr(model, GRB_STR_ATTR_SCENNNAME,
                        "Decreased plant fixed costs");
  if (error) goto QUIT;
  for (p  = 0; p < nPlants; p++) {
    error = GRBsetdblattrelement(model, GRB_DBL_ATTR_SCENNOBJ,
                                 opencol(p), FixedCosts[p] * 0.95);
    if (error) goto QUIT;
  }
  /* Scenario 4: Combine scenario 1 and scenario 3 */
  error = GRBsetintparam(modelenv, GRB_INT_PAR_SCENARIONUMBER, 4);
  if (error) goto QUIT;
  error = GRBsetstrattr(model, GRB_STR_ATTR_SCENNNAME,
                        "Increased warehouse demands and decreased plant fixed costs");
  for (w = 0; w < nWarehouses; w++) {
    error = GRBsetdblattrelement(model, GRB_DBL_ATTR_SCENNRHS,
                                 demandconstr(w), Demand[w] * 1.1);
    if (error) goto QUIT;
  }
  for (p  = 0; p < nPlants; p++) {
    error = GRBsetdblattrelement(model, GRB_DBL_ATTR_SCENNOBJ,
                                 opencol(p), FixedCosts[p] * 0.95);
    if (error) goto QUIT;
  }
  /* Scenario 5: Force the plant with the largest fixed cost to stay
                 open */
  error = GRBsetintparam(modelenv, GRB_INT_PAR_SCENARIONUMBER, 5);
  if (error) goto QUIT;
  error = GRBsetstrattr(model, GRB_STR_ATTR_SCENNNAME,
                        "Force plant with largest fixed cost to stay open");
  if (error) goto QUIT;
  for (p  = 0; p < nPlants; p++) {
    if (FixedCosts[p] == maxFixed) {
      error = GRBsetdblattrelement(model, GRB_DBL_ATTR_SCENNLB,
                                   opencol(p), 1.0);
      if (error) goto QUIT;
      break;
    }
  }
  /* Scenario 6: Force the plant with the smallest fixed cost to be
                 closed */
  error = GRBsetintparam(modelenv, GRB_INT_PAR_SCENARIONUMBER, 6);
  if (error) goto QUIT;
  error = GRBsetstrattr(model, GRB_STR_ATTR_SCENNNAME,
                        "Force plant with smallest fixed cost to be closed");
  if (error) goto QUIT;
  for (p  = 0; p < nPlants; p++) {
    if (FixedCosts[p] == minFixed) {
      error = GRBsetdblattrelement(model, GRB_DBL_ATTR_SCENNUB,
                                   opencol(p), 0.0);
      if (error) goto QUIT;
      break;
    }
  }
  /* Guess at the starting point: close the plant with the highest
     fixed costs; open all others */
  /* First, open all plants */
  for (p = 0; p < nPlants; p++) {
    error = GRBsetdblattrelement(model, GRB_DBL_ATTR_START, opencol(p), 1.0);
    if (error) goto QUIT;
  }
  /* Now close the plant with the highest fixed cost */
  printf("Initial guess:\n");
  for (p = 0; p < nPlants; p++) {
    if (FixedCosts[p] == maxFixed) {
      error = GRBsetdblattrelement(model, GRB_DBL_ATTR_START, opencol(p), 0.0);
      if (error) goto QUIT;
      printf("Closing plant %i\n\n", p);
      break;
    }
  }
  /* Use barrier to solve root relaxation */
  error = GRBsetintparam(modelenv,
                         GRB_INT_PAR_METHOD,
                         GRB_METHOD_BARRIER);
  if (error) goto QUIT;
  /* Solve multi-scenario model */
  error = GRBoptimize(model);
  if (error) goto QUIT;
  error = GRBgetintattr(model, GRB_INT_ATTR_NUMSCENARIOS, &nScenarios);
  if (error) goto QUIT;
  /* Print solution for each */
  for (s = 0; s < nScenarios; s++) {
    char   *scenarioName;
    double  scenNObjBound;
    double  scenNObjVal;
    int     modelSense = GRB_MINIMIZE;
    /* Set the scenario number to query the information for this
       scenario */
    error = GRBsetintparam(modelenv, GRB_INT_PAR_SCENARIONUMBER, s);
    if (error) goto QUIT;
    /* Collect result for the scenario */
    error = GRBgetstrattr(model, GRB_STR_ATTR_SCENNNAME, &scenarioName);
    if (error) goto QUIT;
    error = GRBgetdblattr(model, GRB_DBL_ATTR_SCENNOBJBOUND, &scenNObjBound);
    if (error) goto QUIT;
    error = GRBgetdblattr(model, GRB_DBL_ATTR_SCENNOBJVAL, &scenNObjVal);
    if (error) goto QUIT;
    printf("\n\n------ Scenario %d (%s)\n", s, scenarioName);
    /* Check if we found a feasible solution for this scenario */
    if (modelSense * scenNObjVal >= GRB_INFINITY)
      if (modelSense * scenNObjBound >= GRB_INFINITY)
        /* Scenario was proven to be infeasible */
        printf("\nINFEASIBLE\n");
      else
        /* We did not find any feasible solution - should not happen in
           this case, because we did not set any limit (like a time
           limit) on the optimization process */
        printf("\nNO SOLUTION\n");
    else {
      printf("\nTOTAL COSTS: %g\n", scenNObjVal);
      printf("SOLUTION:\n");
      for (p = 0; p < nPlants; p++) {
        double scenNX;
        error = GRBgetdblattrelement(model, GRB_DBL_ATTR_SCENNX,
                                     opencol(p), &scenNX);
        if (error) goto QUIT;
        if (scenNX > 0.5) {
          printf("Plant %i open\n", p);
          for (w = 0; w < nWarehouses; w++) {
            error = GRBgetdblattrelement(model, GRB_DBL_ATTR_SCENNX,
                                         transportcol(w, p), &scenNX);
            if (error) goto QUIT;
            if (scenNX > 0.0001)
              printf("  Transport %g units to warehouse %i\n",
                     scenNX, w);
          }
        } else
          printf("Plant %i closed!\n",  p);
      }
    }
  }
  /* Print a summary table: for each scenario we add a single summary
     line */
  printf("\n\nSummary: Closed plants depending on scenario\n\n");
  printf("%8s | %17s %13s\n", "", "Plant", "|");
  printf("%8s |", "Scenario");
  for (p = 0; p < nPlants; p++)
    printf(" %5d", p);
  printf(" | %6s  %s\n", "Costs", "Name");
  for (s = 0; s < nScenarios; s++) {
    char   *scenarioName;
    double  scenNObjBound;
    double  scenNObjVal;
    int     modelSense = GRB_MINIMIZE;
    /* Set the scenario number to query the information for this scenario */
    error = GRBsetintparam(modelenv, GRB_INT_PAR_SCENARIONUMBER, s);
    if (error) goto QUIT;
    /* collect result for the scenario */
    error = GRBgetstrattr(model, GRB_STR_ATTR_SCENNNAME, &scenarioName);
    if (error) goto QUIT;
    error = GRBgetdblattr(model, GRB_DBL_ATTR_SCENNOBJBOUND, &scenNObjBound);
    if (error) goto QUIT;
    error = GRBgetdblattr(model, GRB_DBL_ATTR_SCENNOBJVAL, &scenNObjVal);
    if (error) goto QUIT;
    printf("%-8d |", s);
    /* Check if we found a feasible solution for this scenario */
    if (modelSense * scenNObjVal >= GRB_INFINITY)
      if (modelSense * scenNObjBound >= GRB_INFINITY)
        /* Scenario was proven to be infeasible */
        printf(" %-30s| %6s  %s\n", "infeasible", "-", scenarioName);
      else
        /* We did not find any feasible solution - should not happen in
           this case, because we did not set any limit (like a time
           limit) on the optimization process */
        printf(" %-30s| %6s  %s\n", "no solution found", "-", scenarioName);
    else {
      for (p = 0; p < nPlants; p++) {
        double scenNX;
        error = GRBgetdblattrelement(model, GRB_DBL_ATTR_SCENNX,
                                     opencol(p), &scenNX);
        if (scenNX  > 0.5)
          printf(" %5s", " ");
        else
          printf(" %5s", "x");
      }
      printf(" | %6g  %s\n", scenNObjVal, scenarioName);
    }
  }
QUIT:
  /* Error reporting */
  if (error) {
    printf("ERROR: %s\n", GRBgeterrormsg(env));
    exit(1);
  }
  /* Free data */
  free(cbeg);
  free(cind);
  free(cval);
  free(rhs);
  free(sense);
  for (p = 0; p < cnamect; p++)
    free(cname[p]);
  free(cname);
  /* Free model */
  GRBfreemodel(model);
  /* Free environment */
  GRBfreeenv(env);
  return 0;
}
// Copyright 2025, Gurobi Optimization, LLC
// Facility location: a company currently ships its product from 5 plants
// to 4 warehouses. It is considering closing some plants to reduce
// costs. What plant(s) should the company close, in order to minimize
// transportation and fixed costs?
//
// Since the plant fixed costs and the warehouse demands are uncertain, a
// scenario approach is chosen.
//
// Note that this example is similar to the facility_c++.cpp example. Here
// we added scenarios in order to illustrate the multi-scenario feature.
//
// Based on an example from Frontline Systems:
// http://www.solver.com/disfacility.htm
// Used with permission.
#include "gurobi_c++.h"
#include <sstream>
#include <iomanip>
using namespace std;
int
main(int   argc,
     char *argv[])
{
  GRBEnv     *env          = 0;
  GRBVar     *open         = 0;
  GRBVar    **transport    = 0;
  GRBConstr  *demandConstr = 0;
  int transportCt = 0;
  try {
    // Number of plants and warehouses
    const int nPlants = 5;
    const int nWarehouses = 4;
    // Warehouse demand in thousands of units
    double Demand[] = { 15, 18, 14, 20 };
    // Plant capacity in thousands of units
    double Capacity[] = { 20, 22, 17, 19, 18 };
    // Fixed costs for each plant
    double FixedCosts[] =
      { 12000, 15000, 17000, 13000, 16000 };
    // Transportation costs per thousand units
    double TransCosts[][nPlants] = {
      { 4000, 2000, 3000, 2500, 4500 },
      { 2500, 2600, 3400, 3000, 4000 },
      { 1200, 1800, 2600, 4100, 3000 },
      { 2200, 2600, 3100, 3700, 3200 }
    };
    double maxFixed = -GRB_INFINITY;
    double minFixed = GRB_INFINITY;
    int p;
    for (p = 0; p < nPlants; p++) {
      if (FixedCosts[p] > maxFixed)
        maxFixed = FixedCosts[p];
      if (FixedCosts[p] < minFixed)
        minFixed = FixedCosts[p];
    }
    // Model
    env = new GRBEnv();
    GRBModel model = GRBModel(*env);
    model.set(GRB_StringAttr_ModelName, "multiscenario");
    // Plant open decision variables: open[p] == 1 if plant p is open.
    open = model.addVars(nPlants, GRB_BINARY);
    for (p = 0; p < nPlants; p++) {
      ostringstream vname;
      vname << "Open" << p;
      open[p].set(GRB_DoubleAttr_Obj, FixedCosts[p]);
      open[p].set(GRB_StringAttr_VarName, vname.str());
    }
    // Transportation decision variables: how much to transport from
    // a plant p to a warehouse w
    transport = new GRBVar* [nWarehouses];
    int w;
    for (w = 0; w < nWarehouses; w++) {
      transport[w] = model.addVars(nPlants);
      transportCt++;
      for (p = 0; p < nPlants; p++) {
        ostringstream vname;
        vname << "Trans" << p << "." << w;
        transport[w][p].set(GRB_DoubleAttr_Obj, TransCosts[w][p]);
        transport[w][p].set(GRB_StringAttr_VarName, vname.str());
      }
    }
    // The objective is to minimize the total fixed and variable costs
    model.set(GRB_IntAttr_ModelSense, GRB_MINIMIZE);
    // Production constraints
    // Note that the right-hand limit sets the production to zero if
    // the plant is closed
    for (p = 0; p < nPlants; p++) {
      GRBLinExpr ptot = 0;
      for (w = 0; w < nWarehouses; w++) {
        ptot += transport[w][p];
      }
      ostringstream cname;
      cname << "Capacity" << p;
      model.addConstr(ptot <= Capacity[p] * open[p], cname.str());
    }
    // Demand constraints
    demandConstr = new GRBConstr[nWarehouses];
    for (w = 0; w < nWarehouses; w++) {
      GRBLinExpr dtot = 0;
      for (p = 0; p < nPlants; p++)
        dtot += transport[w][p];
      ostringstream cname;
      cname << "Demand" << w;
      demandConstr[w] = model.addConstr(dtot == Demand[w], cname.str());
    }
    // We constructed the base model, now we add 7 scenarios
    //
    // Scenario 0: Represents the base model, hence, no manipulations.
    // Scenario 1: Manipulate the warehouses demands slightly (constraint right
    //             hand sides).
    // Scenario 2: Double the warehouses demands (constraint right hand sides).
    // Scenario 3: Manipulate the plant fixed costs (objective coefficients).
    // Scenario 4: Manipulate the warehouses demands and fixed costs.
    // Scenario 5: Force the plant with the largest fixed cost to stay open
    //             (variable bounds).
    // Scenario 6: Force the plant with the smallest fixed cost to be closed
    //             (variable bounds).
    model.set(GRB_IntAttr_NumScenarios, 7);
    // Scenario 0: Base model, hence, nothing to do except giving the
    //             scenario a name
    model.set(GRB_IntParam_ScenarioNumber, 0);
    model.set(GRB_StringAttr_ScenNName, "Base model");
    // Scenario 1: Increase the warehouse demands by 10%
    model.set(GRB_IntParam_ScenarioNumber, 1);
    model.set(GRB_StringAttr_ScenNName, "Increased warehouse demands");
    for (w = 0; w < nWarehouses; w++) {
      demandConstr[w].set(GRB_DoubleAttr_ScenNRHS, Demand[w] * 1.1);
    }
    // Scenario 2: Double the warehouse demands
    model.set(GRB_IntParam_ScenarioNumber, 2);
    model.set(GRB_StringAttr_ScenNName, "Double the warehouse demands");
    for (w = 0; w < nWarehouses; w++) {
      demandConstr[w].set(GRB_DoubleAttr_ScenNRHS, Demand[w] * 2.0);
    }
    // Scenario 3: Decrease the plant fixed costs by 5%
    model.set(GRB_IntParam_ScenarioNumber, 3);
    model.set(GRB_StringAttr_ScenNName, "Decreased plant fixed costs");
    for (p = 0; p < nPlants; p++) {
      open[p].set(GRB_DoubleAttr_ScenNObj, FixedCosts[p] * 0.95);
    }
    // Scenario 4: Combine scenario 1 and scenario 3 */
    model.set(GRB_IntParam_ScenarioNumber, 4);
    model.set(GRB_StringAttr_ScenNName, "Increased warehouse demands and decreased plant fixed costs");
    for (w = 0; w < nWarehouses; w++) {
      demandConstr[w].set(GRB_DoubleAttr_ScenNRHS, Demand[w] * 1.1);
    }
    for (p = 0; p < nPlants; p++) {
      open[p].set(GRB_DoubleAttr_ScenNObj, FixedCosts[p] * 0.95);
    }
    // Scenario 5: Force the plant with the largest fixed cost to stay
    //             open
    model.set(GRB_IntParam_ScenarioNumber, 5);
    model.set(GRB_StringAttr_ScenNName, "Force plant with largest fixed cost to stay open");
    for (p = 0; p < nPlants; p++) {
      if (FixedCosts[p] == maxFixed) {
        open[p].set(GRB_DoubleAttr_ScenNLB, 1.0);
        break;
      }
    }
    // Scenario 6: Force the plant with the smallest fixed cost to be
    //             closed
    model.set(GRB_IntParam_ScenarioNumber, 6);
    model.set(GRB_StringAttr_ScenNName, "Force plant with smallest fixed cost to be closed");
    for (p = 0; p < nPlants; p++) {
      if (FixedCosts[p] == minFixed) {
        open[p].set(GRB_DoubleAttr_ScenNUB, 0.0);
        break;
      }
    }
    // Guess at the starting point: close the plant with the highest
    // fixed costs; open all others
    // First, open all plants
    for (p = 0; p < nPlants; p++)
      open[p].set(GRB_DoubleAttr_Start, 1.0);
    // Now close the plant with the highest fixed cost
    cout << "Initial guess:" << endl;
    for (p = 0; p < nPlants; p++) {
      if (FixedCosts[p] == maxFixed) {
        open[p].set(GRB_DoubleAttr_Start, 0.0);
        cout << "Closing plant " << p << endl << endl;
        break;
      }
    }
    // Use barrier to solve root relaxation
    model.set(GRB_IntParam_Method, GRB_METHOD_BARRIER);
    // Solve multi-scenario model
    model.optimize();
    int nScenarios = model.get(GRB_IntAttr_NumScenarios);
    // Print solution for each */
    for (int s = 0; s < nScenarios; s++) {
      int modelSense = GRB_MINIMIZE;
      // Set the scenario number to query the information for this scenario
      model.set(GRB_IntParam_ScenarioNumber, s);
      // collect result for the scenario
      double scenNObjBound = model.get(GRB_DoubleAttr_ScenNObjBound);
      double scenNObjVal = model.get(GRB_DoubleAttr_ScenNObjVal);
      cout << endl << endl << "------ Scenario " << s
           << " (" << model.get(GRB_StringAttr_ScenNName) << ")" << endl;
      // Check if we found a feasible solution for this scenario
      if (modelSense * scenNObjVal >= GRB_INFINITY)
        if (modelSense * scenNObjBound >= GRB_INFINITY)
          // Scenario was proven to be infeasible
          cout << endl << "INFEASIBLE" << endl;
        else
          // We did not find any feasible solution - should not happen in
          // this case, because we did not set any limit (like a time
          // limit) on the optimization process
          cout << endl << "NO SOLUTION" << endl;
      else {
        cout << endl << "TOTAL COSTS: " << scenNObjVal << endl;
        cout << "SOLUTION:" << endl;
        for (p = 0; p < nPlants; p++) {
          double scenNX = open[p].get(GRB_DoubleAttr_ScenNX);
          if (scenNX > 0.5) {
            cout << "Plant " << p << " open" << endl;
            for (w = 0; w < nWarehouses; w++) {
              scenNX = transport[w][p].get(GRB_DoubleAttr_ScenNX);
              if (scenNX > 0.0001)
                cout << "  Transport " << scenNX
                     << " units to warehouse " << w << endl;
            }
          } else
            cout << "Plant " << p << " closed!" << endl;
        }
      }
    }
    // Print a summary table: for each scenario we add a single summary
    // line
    cout << endl << endl << "Summary: Closed plants depending on scenario" << endl << endl;
    cout << setw(8) << " " << " | " << setw(17) << "Plant" << setw(14) << "|" << endl;
    cout << setw(8) << "Scenario" << " |";
    for (p = 0; p < nPlants; p++)
      cout << " " << setw(5) << p;
    cout << " | " << setw(6) << "Costs" << "  Name" << endl;
    for (int s = 0; s < nScenarios; s++) {
      int modelSense = GRB_MINIMIZE;
      // Set the scenario number to query the information for this scenario
      model.set(GRB_IntParam_ScenarioNumber, s);
      // Collect result for the scenario
      double scenNObjBound = model.get(GRB_DoubleAttr_ScenNObjBound);
      double scenNObjVal = model.get(GRB_DoubleAttr_ScenNObjVal);
      cout << left << setw(8) << s << right << " |";
      // Check if we found a feasible solution for this scenario
      if (modelSense * scenNObjVal >= GRB_INFINITY) {
        if (modelSense * scenNObjBound >= GRB_INFINITY)
          // Scenario was proven to be infeasible
          cout << " " << left << setw(30) << "infeasible" << right;
        else
          // We did not find any feasible solution - should not happen in
          // this case, because we did not set any limit (like a time
          // limit) on the optimization process
          cout << " " << left << setw(30) << "no solution found" << right;
        cout << "| " << setw(6) << "-"
             << "  " << model.get(GRB_StringAttr_ScenNName)
             << endl;
      } else {
        for (p = 0; p < nPlants; p++) {
          double scenNX = open[p].get(GRB_DoubleAttr_ScenNX);
          if (scenNX  > 0.5)
            cout << setw(6) << " ";
          else
            cout << " " << setw(5) << "x";
        }
        cout << " | " << setw(6) << scenNObjVal
             << "  " << model.get(GRB_StringAttr_ScenNName)
             << endl;
      }
    }
  }
  catch (GRBException e) {
    cout << "Error code = " << e.getErrorCode() << endl;
    cout << e.getMessage() << endl;
  }
  catch (...) {
    cout << "Exception during optimization" << endl;
  }
  delete[] open;
  for (int i = 0; i < transportCt; ++i) {
    delete[] transport[i];
  }
  delete[] transport;
  delete[] demandConstr;
  delete env;
  return 0;
}
// Copyright 2025, Gurobi Optimization, LLC
// Facility location: a company currently ships its product from 5 plants
// to 4 warehouses. It is considering closing some plants to reduce
// costs. What plant(s) should the company close, in order to minimize
// transportation and fixed costs?
//
// Since the plant fixed costs and the warehouse demands are uncertain, a
// scenario approach is chosen.
//
// Note that this example is similar to the facility_cs.cs example. Here we
// added scenarios in order to illustrate the multi-scenario feature.
//
// Based on an example from Frontline Systems:
// http://www.solver.com/disfacility.htm
// Used with permission.
using System;
using Gurobi;
class multiscenario_cs
{
  static void Main()
  {
    try {
      // Warehouse demand in thousands of units
      double[] Demand = new double[] { 15, 18, 14, 20 };
      // Plant capacity in thousands of units
      double[] Capacity = new double[] { 20, 22, 17, 19, 18 };
      // Fixed costs for each plant
      double[] FixedCosts =
        new double[] { 12000, 15000, 17000, 13000, 16000 };
      // Transportation costs per thousand units
      double[,] TransCosts =
        new double[,] { { 4000, 2000, 3000, 2500, 4500 },
                        { 2500, 2600, 3400, 3000, 4000 },
                        { 1200, 1800, 2600, 4100, 3000 },
                        { 2200, 2600, 3100, 3700, 3200 } };
      // Number of plants and warehouses
      int nPlants = Capacity.Length;
      int nWarehouses = Demand.Length;
      double maxFixed = -GRB.INFINITY;
      double minFixed = GRB.INFINITY;
      for (int p = 0; p < nPlants; ++p) {
        if (FixedCosts[p] > maxFixed)
          maxFixed = FixedCosts[p];
        if (FixedCosts[p] < minFixed)
          minFixed = FixedCosts[p];
      }
      // Model
      GRBEnv env = new GRBEnv();
      GRBModel model = new GRBModel(env);
      model.ModelName = "multiscenario";
      // Plant open decision variables: open[p] == 1 if plant p is open.
      GRBVar[] open = new GRBVar[nPlants];
      for (int p = 0; p < nPlants; ++p) {
        open[p] = model.AddVar(0, 1, FixedCosts[p], GRB.BINARY, "Open" + p);
      }
      // Transportation decision variables: how much to transport from
      // a plant p to a warehouse w
      GRBVar[,] transport = new GRBVar[nWarehouses,nPlants];
      for (int w = 0; w < nWarehouses; ++w) {
        for (int p = 0; p < nPlants; ++p) {
          transport[w,p] = model.AddVar(0, GRB.INFINITY, TransCosts[w,p],
                                        GRB.CONTINUOUS, "Trans" + p + "." + w);
        }
      }
      // The objective is to minimize the total fixed and variable costs
      model.ModelSense = GRB.MINIMIZE;
      // Production constraints
      // Note that the right-hand limit sets the production to zero if
      // the plant is closed
      for (int p = 0; p < nPlants; ++p) {
        GRBLinExpr ptot = 0.0;
        for (int w = 0; w < nWarehouses; ++w)
          ptot.AddTerm(1.0, transport[w,p]);
        model.AddConstr(ptot <= Capacity[p] * open[p], "Capacity" + p);
      }
      // Demand constraints
      GRBConstr[] demandConstr = new GRBConstr[nWarehouses];
      for (int w = 0; w < nWarehouses; ++w) {
        GRBLinExpr dtot = 0.0;
        for (int p = 0; p < nPlants; ++p)
          dtot.AddTerm(1.0, transport[w,p]);
        demandConstr[w] = model.AddConstr(dtot == Demand[w], "Demand" + w);
      }
      // We constructed the base model, now we add 7 scenarios
      //
      // Scenario 0: Represents the base model, hence, no manipulations.
      // Scenario 1: Manipulate the warehouses demands slightly (constraint right
      //             hand sides).
      // Scenario 2: Double the warehouses demands (constraint right hand sides).
      // Scenario 3: Manipulate the plant fixed costs (objective coefficients).
      // Scenario 4: Manipulate the warehouses demands and fixed costs.
      // Scenario 5: Force the plant with the largest fixed cost to stay open
      //             (variable bounds).
      // Scenario 6: Force the plant with the smallest fixed cost to be closed
      //             (variable bounds).
      model.NumScenarios = 7;
      // Scenario 0: Base model, hence, nothing to do except giving the
      //             scenario a name
      model.Parameters.ScenarioNumber = 0;
      model.ScenNName = "Base model";
      // Scenario 1: Increase the warehouse demands by 10%
      model.Parameters.ScenarioNumber = 1;
      model.ScenNName = "Increased warehouse demands";
      for (int w = 0; w < nWarehouses; w++) {
        demandConstr[w].ScenNRHS = Demand[w] * 1.1;
      }
      // Scenario 2: Double the warehouse demands
      model.Parameters.ScenarioNumber = 2;
      model.ScenNName = "Double the warehouse demands";
      for (int w = 0; w < nWarehouses; w++) {
        demandConstr[w].ScenNRHS = Demand[w] * 2.0;
      }
      // Scenario 3: Decrease the plant fixed costs by 5%
      model.Parameters.ScenarioNumber = 3;
      model.ScenNName = "Decreased plant fixed costs";
      for (int p = 0; p < nPlants; p++) {
        open[p].ScenNObj = FixedCosts[p] * 0.95;
      }
      // Scenario 4: Combine scenario 1 and scenario 3 */
      model.Parameters.ScenarioNumber = 4;
      model.ScenNName = "Increased warehouse demands and decreased plant fixed costs";
      for (int w = 0; w < nWarehouses; w++) {
        demandConstr[w].ScenNRHS = Demand[w] * 1.1;
      }
      for (int p = 0; p < nPlants; p++) {
        open[p].ScenNObj = FixedCosts[p] * 0.95;
      }
      // Scenario 5: Force the plant with the largest fixed cost to stay
      //             open
      model.Parameters.ScenarioNumber = 5;
      model.ScenNName = "Force plant with largest fixed cost to stay open";
      for (int p = 0; p < nPlants; p++) {
        if (FixedCosts[p] == maxFixed) {
          open[p].ScenNLB = 1.0;
          break;
        }
      }
      // Scenario 6: Force the plant with the smallest fixed cost to be
      //             closed
      model.Parameters.ScenarioNumber = 6;
      model.ScenNName = "Force plant with smallest fixed cost to be closed";
      for (int p = 0; p < nPlants; p++) {
        if (FixedCosts[p] == minFixed) {
          open[p].ScenNUB = 0.0;
          break;
        }
      }
      // Guess at the starting point: close the plant with the highest
      // fixed costs; open all others
      // First, open all plants
      for (int p = 0; p < nPlants; ++p) {
        open[p].Start = 1.0;
      }
      // Now close the plant with the highest fixed cost
      Console.WriteLine("Initial guess:");
      for (int p = 0; p < nPlants; ++p) {
        if (FixedCosts[p] == maxFixed) {
          open[p].Start = 0.0;
          Console.WriteLine("Closing plant " + p + "\n");
          break;
        }
      }
      // Use barrier to solve root relaxation
      model.Parameters.Method = GRB.METHOD_BARRIER;
      // Solve multi-scenario model
      model.Optimize();
      int nScenarios = model.NumScenarios;
      for (int s = 0; s < nScenarios; s++) {
        int modelSense = GRB.MINIMIZE;
        // Set the scenario number to query the information for this scenario
        model.Parameters.ScenarioNumber = s;
        // collect result for the scenario
        double scenNObjBound = model.ScenNObjBound;
        double scenNObjVal = model.ScenNObjVal;
        Console.WriteLine("\n\n------ Scenario " + s
                          + " (" +  model.ScenNName + ")");
        // Check if we found a feasible solution for this scenario
        if (modelSense * scenNObjVal >= GRB.INFINITY)
          if (modelSense * scenNObjBound >= GRB.INFINITY)
            // Scenario was proven to be infeasible
            Console.WriteLine("\nINFEASIBLE");
          else
            // We did not find any feasible solution - should not happen in
            // this case, because we did not set any limit (like a time
            // limit) on the optimization process
            Console.WriteLine("\nNO SOLUTION");
        else {
          Console.WriteLine("\nTOTAL COSTS: " + scenNObjVal);
          Console.WriteLine("SOLUTION:");
          for (int p = 0; p < nPlants; p++) {
            double scenNX = open[p].ScenNX;
            if (scenNX > 0.5) {
              Console.WriteLine("Plant " + p + " open");
              for (int w = 0; w < nWarehouses; w++) {
                scenNX = transport[w,p].ScenNX;
                if (scenNX > 0.0001)
                  Console.WriteLine("  Transport " + scenNX
                                    + " units to warehouse " + w);
              }
            } else
              Console.WriteLine("Plant " + p + " closed!");
          }
        }
      }
      // Print a summary table: for each scenario we add a single summary
      // line
      Console.WriteLine("\n\nSummary: Closed plants depending on scenario\n");
      Console.WriteLine("{0,8} | {1,17} {2,13}", "", "Plant", "|");
      Console.Write("{0,8} |", "Scenario");
      for (int p = 0; p < nPlants; p++)
        Console.Write("{0,6}", p);
      Console.WriteLine(" | {0,6}  Name", "Costs");
      for (int s = 0; s < nScenarios; s++) {
        int modelSense = GRB.MINIMIZE;
        // Set the scenario number to query the information for this scenario
        model.Parameters.ScenarioNumber = s;
        // Collect result for the scenario
        double scenNObjBound = model.ScenNObjBound;
        double scenNObjVal = model.ScenNObjVal;
        Console.Write("{0,-8} |", s);
        // Check if we found a feasible solution for this scenario
        if (modelSense * scenNObjVal >= GRB.INFINITY) {
          if (modelSense * scenNObjBound >= GRB.INFINITY)
            // Scenario was proven to be infeasible
            Console.WriteLine(" {0,-30}| {1,6}  " + model.ScenNName,
                              "infeasible", "-");
          else
            // We did not find any feasible solution - should not happen in
            // this case, because we did not set any limit (like a time
            // limit) on the optimization process
            Console.WriteLine(" {0,-30}| {1,6}  " + model.ScenNName,
                              "no solution found", "-");
        } else {
          for (int p = 0; p < nPlants; p++) {
            double scenNX = open[p].ScenNX;
            if (scenNX  > 0.5)
              Console.Write("{0,6}", " ");
            else
              Console.Write("{0,6}", "x");
          }
          Console.WriteLine(" | {0,6}  "+ model.ScenNName, scenNObjVal);
        }
      }
      // Dispose of model and env
      model.Dispose();
      env.Dispose();
    } catch (GRBException e) {
      Console.WriteLine("Error code: " + e.ErrorCode + ". " + e.Message);
    }
  }
}
// Copyright 2025, Gurobi Optimization, LLC
// Facility location: a company currently ships its product from 5 plants
// to 4 warehouses. It is considering closing some plants to reduce
// costs. What plant(s) should the company close, in order to minimize
// transportation and fixed costs?
//
// Since the plant fixed costs and the warehouse demands are uncertain, a
// scenario approach is chosen.
//
// Note that this example is similar to the Facility.java example. Here we
// added scenarios in order to illustrate the multi-scenario feature.
//
// Based on an example from Frontline Systems:
// http://www.solver.com/disfacility.htm
// Used with permission.
import com.gurobi.gurobi.*;
public class Multiscenario {
  public static void main(String[] args) {
    try {
      // Warehouse demand in thousands of units
      double Demand[] = new double[] { 15, 18, 14, 20 };
      // Plant capacity in thousands of units
      double Capacity[] = new double[] { 20, 22, 17, 19, 18 };
      // Fixed costs for each plant
      double FixedCosts[] =
        new double[] { 12000, 15000, 17000, 13000, 16000 };
      // Transportation costs per thousand units
      double TransCosts[][] =
        new double[][] { { 4000, 2000, 3000, 2500, 4500 },
                         { 2500, 2600, 3400, 3000, 4000 },
                         { 1200, 1800, 2600, 4100, 3000 },
                         { 2200, 2600, 3100, 3700, 3200 } };
      // Number of plants and warehouses
      int nPlants = Capacity.length;
      int nWarehouses = Demand.length;
      double maxFixed = -GRB.INFINITY;
      double minFixed = GRB.INFINITY;
      for (int p = 0; p < nPlants; ++p) {
        if (FixedCosts[p] > maxFixed)
          maxFixed = FixedCosts[p];
        if (FixedCosts[p] < minFixed)
          minFixed = FixedCosts[p];
      }
      // Model
      GRBEnv env = new GRBEnv();
      GRBModel model = new GRBModel(env);
      model.set(GRB.StringAttr.ModelName, "multiscenario");
      // Plant open decision variables: open[p] == 1 if plant p is open.
      GRBVar[] open = new GRBVar[nPlants];
      for (int p = 0; p < nPlants; ++p) {
        open[p] = model.addVar(0, 1, FixedCosts[p], GRB.BINARY, "Open" + p);
      }
      // Transportation decision variables: how much to transport from
      // a plant p to a warehouse w
      GRBVar[][] transport = new GRBVar[nWarehouses][nPlants];
      for (int w = 0; w < nWarehouses; ++w) {
        for (int p = 0; p < nPlants; ++p) {
          transport[w][p] = model.addVar(0, GRB.INFINITY, TransCosts[w][p],
                                         GRB.CONTINUOUS, "Trans" + p + "." + w);
        }
      }
      // The objective is to minimize the total fixed and variable costs
      model.set(GRB.IntAttr.ModelSense, GRB.MINIMIZE);
      // Production constraints
      // Note that the right-hand limit sets the production to zero if
      // the plant is closed
      for (int p = 0; p < nPlants; ++p) {
        GRBLinExpr ptot = new GRBLinExpr();
        for (int w = 0; w < nWarehouses; ++w) {
          ptot.addTerm(1.0, transport[w][p]);
        }
        GRBLinExpr limit = new GRBLinExpr();
        limit.addTerm(Capacity[p], open[p]);
        model.addConstr(ptot, GRB.LESS_EQUAL, limit, "Capacity" + p);
      }
      // Demand constraints
      GRBConstr[] demandConstr = new GRBConstr[nWarehouses];
      for (int w = 0; w < nWarehouses; ++w) {
        GRBLinExpr dtot = new GRBLinExpr();
        for (int p = 0; p < nPlants; ++p) {
          dtot.addTerm(1.0, transport[w][p]);
        }
        demandConstr[w] = model.addConstr(dtot, GRB.EQUAL, Demand[w], "Demand" + w);
      }
      // We constructed the base model, now we add 7 scenarios
      //
      // Scenario 0: Represents the base model, hence, no manipulations.
      // Scenario 1: Manipulate the warehouses demands slightly (constraint right
      //             hand sides).
      // Scenario 2: Double the warehouses demands (constraint right hand sides).
      // Scenario 3: Manipulate the plant fixed costs (objective coefficients).
      // Scenario 4: Manipulate the warehouses demands and fixed costs.
      // Scenario 5: Force the plant with the largest fixed cost to stay open
      //             (variable bounds).
      // Scenario 6: Force the plant with the smallest fixed cost to be closed
      //             (variable bounds).
      model.set(GRB.IntAttr.NumScenarios, 7);
      // Scenario 0: Base model, hence, nothing to do except giving the
      //             scenario a name
      model.set(GRB.IntParam.ScenarioNumber, 0);
      model.set(GRB.StringAttr.ScenNName, "Base model");
      // Scenario 1: Increase the warehouse demands by 10%
      model.set(GRB.IntParam.ScenarioNumber, 1);
      model.set(GRB.StringAttr.ScenNName, "Increased warehouse demands");
      for (int w = 0; w < nWarehouses; w++) {
        demandConstr[w].set(GRB.DoubleAttr.ScenNRHS, Demand[w] * 1.1);
      }
      // Scenario 2: Double the warehouse demands
      model.set(GRB.IntParam.ScenarioNumber, 2);
      model.set(GRB.StringAttr.ScenNName, "Double the warehouse demands");
      for (int w = 0; w < nWarehouses; w++) {
        demandConstr[w].set(GRB.DoubleAttr.ScenNRHS, Demand[w] * 2.0);
      }
      // Scenario 3: Decrease the plant fixed costs by 5%
      model.set(GRB.IntParam.ScenarioNumber, 3);
      model.set(GRB.StringAttr.ScenNName, "Decreased plant fixed costs");
      for (int p = 0; p < nPlants; p++) {
        open[p].set(GRB.DoubleAttr.ScenNObj, FixedCosts[p] * 0.95);
      }
      // Scenario 4: Combine scenario 1 and scenario 3 */
      model.set(GRB.IntParam.ScenarioNumber, 4);
      model.set(GRB.StringAttr.ScenNName, "Increased warehouse demands and decreased plant fixed costs");
      for (int w = 0; w < nWarehouses; w++) {
        demandConstr[w].set(GRB.DoubleAttr.ScenNRHS, Demand[w] * 1.1);
      }
      for (int p = 0; p < nPlants; p++) {
        open[p].set(GRB.DoubleAttr.ScenNObj, FixedCosts[p] * 0.95);
      }
      // Scenario 5: Force the plant with the largest fixed cost to stay
      //             open
      model.set(GRB.IntParam.ScenarioNumber, 5);
      model.set(GRB.StringAttr.ScenNName, "Force plant with largest fixed cost to stay open");
      for (int p = 0; p < nPlants; p++) {
        if (FixedCosts[p] == maxFixed) {
          open[p].set(GRB.DoubleAttr.ScenNLB, 1.0);
          break;
        }
      }
      // Scenario 6: Force the plant with the smallest fixed cost to be
      //             closed
      model.set(GRB.IntParam.ScenarioNumber, 6);
      model.set(GRB.StringAttr.ScenNName, "Force plant with smallest fixed cost to be closed");
      for (int p = 0; p < nPlants; p++) {
        if (FixedCosts[p] == minFixed) {
          open[p].set(GRB.DoubleAttr.ScenNUB, 0.0);
          break;
        }
      }
      // Guess at the starting point: close the plant with the highest
      // fixed costs; open all others
      // First, open all plants
      for (int p = 0; p < nPlants; ++p) {
        open[p].set(GRB.DoubleAttr.Start, 1.0);
      }
      // Now close the plant with the highest fixed cost
      System.out.println("Initial guess:");
      for (int p = 0; p < nPlants; ++p) {
        if (FixedCosts[p] == maxFixed) {
          open[p].set(GRB.DoubleAttr.Start, 0.0);
          System.out.println("Closing plant " + p + "\n");
          break;
        }
      }
      // Use barrier to solve root relaxation
      model.set(GRB.IntParam.Method, GRB.METHOD_BARRIER);
      // Solve multi-scenario model
      model.optimize();
      int nScenarios = model.get(GRB.IntAttr.NumScenarios);
      // Print solution for each */
      for (int s = 0; s < nScenarios; s++) {
        int modelSense = GRB.MINIMIZE;
        // Set the scenario number to query the information for this scenario
        model.set(GRB.IntParam.ScenarioNumber, s);
        // collect result for the scenario
        double scenNObjBound = model.get(GRB.DoubleAttr.ScenNObjBound);
        double scenNObjVal = model.get(GRB.DoubleAttr.ScenNObjVal);
        System.out.println("\n\n------ Scenario " + s +
                           " (" +  model.get(GRB.StringAttr.ScenNName) + ")");
        // Check if we found a feasible solution for this scenario
        if (modelSense * scenNObjVal >= GRB.INFINITY)
          if (modelSense * scenNObjBound >= GRB.INFINITY)
            // Scenario was proven to be infeasible
            System.out.println("\nINFEASIBLE");
          else
            // We did not find any feasible solution - should not happen in
            // this case, because we did not set any limit (like a time
            // limit) on the optimization process
            System.out.println("\nNO SOLUTION");
        else {
          System.out.println("\nTOTAL COSTS: " + scenNObjVal);
          System.out.println("SOLUTION:");
          for (int p = 0; p < nPlants; p++) {
            double scenNX = open[p].get(GRB.DoubleAttr.ScenNX);
            if (scenNX > 0.5) {
              System.out.println("Plant " + p + " open");
              for (int w = 0; w < nWarehouses; w++) {
                scenNX = transport[w][p].get(GRB.DoubleAttr.ScenNX);
                if (scenNX > 0.0001)
                  System.out.println("  Transport " + scenNX +
                                     " units to warehouse " + w);
              }
            } else
              System.out.println("Plant " + p + " closed!");
          }
        }
      }
      // Print a summary table: for each scenario we add a single summary
      // line
      System.out.println("\n\nSummary: Closed plants depending on scenario\n");
      System.out.format("%8s | %17s %13s\n", "", "Plant", "|");
      System.out.format("%8s |", "Scenario");
      for (int p = 0; p < nPlants; p++)
        System.out.format(" %5d", p);
      System.out.format(" | %6s  %s\n", "Costs", "Name");
      for (int s = 0; s < nScenarios; s++) {
        int modelSense = GRB.MINIMIZE;
        // Set the scenario number to query the information for this scenario
        model.set(GRB.IntParam.ScenarioNumber, s);
        // Collect result for the scenario
        double scenNObjBound = model.get(GRB.DoubleAttr.ScenNObjBound);
        double scenNObjVal = model.get(GRB.DoubleAttr.ScenNObjVal);
        System.out.format("%-8d |", s);
        // Check if we found a feasible solution for this scenario
        if (modelSense * scenNObjVal >= GRB.INFINITY) {
          if (modelSense * scenNObjBound >= GRB.INFINITY)
            // Scenario was proven to be infeasible
            System.out.format(" %-30s| %6s  %s\n",
                              "infeasible", "-", model.get(GRB.StringAttr.ScenNName));
          else
            // We did not find any feasible solution - should not happen in
            // this case, because we did not set any limit (like a time
            // limit) on the optimization process
            System.out.format(" %-30s| %6s  %s\n",
                              "no solution found", "-", model.get(GRB.StringAttr.ScenNName));
        } else {
          for (int p = 0; p < nPlants; p++) {
            double scenNX = open[p].get(GRB.DoubleAttr.ScenNX);
            if (scenNX  > 0.5)
              System.out.format("%6s", " ");
            else
              System.out.format("%6s", "x");
          }
          System.out.format(" | %6g  %s\n", scenNObjVal, model.get(GRB.StringAttr.ScenNName));
        }
      }
      // Dispose of model and environment
      model.dispose();
      env.dispose();
    } catch (GRBException e) {
      System.out.println("Error code: " + e.getErrorCode() + ". " +
                         e.getMessage());
    }
  }
}
#!/usr/bin/env python3.11
# Copyright 2025, Gurobi Optimization, LLC
# Facility location: a company currently ships its product from 5 plants to
# 4 warehouses. It is considering closing some plants to reduce costs. What
# plant(s) should the company close, in order to minimize transportation
# and fixed costs?
#
# Since the plant fixed costs and the warehouse demands are uncertain, a
# scenario approach is chosen.
#
# Note that this example is similar to the facility.py example. Here we
# added scenarios in order to illustrate the multi-scenario feature.
#
# Note that this example uses lists instead of dictionaries.  Since
# it does not work with sparse data, lists are a reasonable option.
#
# Based on an example from Frontline Systems:
#   http://www.solver.com/disfacility.htm
# Used with permission.
import gurobipy as gp
from gurobipy import GRB
# Warehouse demand in thousands of units
demand = [15, 18, 14, 20]
# Plant capacity in thousands of units
capacity = [20, 22, 17, 19, 18]
# Fixed costs for each plant
fixedCosts = [12000, 15000, 17000, 13000, 16000]
maxFixed = max(fixedCosts)
minFixed = min(fixedCosts)
# Transportation costs per thousand units
transCosts = [
    [4000, 2000, 3000, 2500, 4500],
    [2500, 2600, 3400, 3000, 4000],
    [1200, 1800, 2600, 4100, 3000],
    [2200, 2600, 3100, 3700, 3200],
]
# Range of plants and warehouses
plants = range(len(capacity))
warehouses = range(len(demand))
# Model
m = gp.Model("multiscenario")
# Plant open decision variables: open[p] == 1 if plant p is open.
open = m.addVars(plants, vtype=GRB.BINARY, obj=fixedCosts, name="open")
# Transportation decision variables: transport[w,p] captures the
# optimal quantity to transport to warehouse w from plant p
transport = m.addVars(warehouses, plants, obj=transCosts, name="trans")
# You could use Python looping constructs and m.addVar() to create
# these decision variables instead.  The following would be equivalent
# to the preceding two statements...
#
# open = []
# for p in plants:
#     open.append(m.addVar(vtype=GRB.BINARY,
#                          obj=fixedCosts[p],
#                          name="open[%d]" % p))
#
# transport = []
# for w in warehouses:
#     transport.append([])
#     for p in plants:
#         transport[w].append(m.addVar(obj=transCosts[w][p],
#                                      name="trans[%d,%d]" % (w, p)))
# The objective is to minimize the total fixed and variable costs
m.ModelSense = GRB.MINIMIZE
# Production constraints
# Note that the right-hand limit sets the production to zero if the plant
# is closed
m.addConstrs(
    (transport.sum("*", p) <= capacity[p] * open[p] for p in plants), "Capacity"
)
# Using Python looping constructs, the preceding would be...
#
# for p in plants:
#     m.addConstr(sum(transport[w][p] for w in warehouses)
#                 <= capacity[p] * open[p], "Capacity[%d]" % p)
# Demand constraints
demandConstr = m.addConstrs(
    (transport.sum(w) == demand[w] for w in warehouses), "Demand"
)
# ... and the preceding would be ...
# for w in warehouses:
#     m.addConstr(sum(transport[w][p] for p in plants) == demand[w],
#                 "Demand[%d]" % w)
# We constructed the base model, now we add 7 scenarios
#
# Scenario 0: Represents the base model, hence, no manipulations.
# Scenario 1: Manipulate the warehouses demands slightly (constraint right
#             hand sides).
# Scenario 2: Double the warehouses demands (constraint right hand sides).
# Scenario 3: Manipulate the plant fixed costs (objective coefficients).
# Scenario 4: Manipulate the warehouses demands and fixed costs.
# Scenario 5: Force the plant with the largest fixed cost to stay open
#             (variable bounds).
# Scenario 6: Force the plant with the smallest fixed cost to be closed
#             (variable bounds).
m.NumScenarios = 7
# Scenario 0: Base model, hence, nothing to do except giving the scenario a
#             name
m.Params.ScenarioNumber = 0
m.ScenNName = "Base model"
# Scenario 1: Increase the warehouse demands by 10%
m.Params.ScenarioNumber = 1
m.ScenNName = "Increased warehouse demands"
for w in warehouses:
    demandConstr[w].ScenNRhs = demand[w] * 1.1
# Scenario 2: Double the warehouse demands
m.Params.ScenarioNumber = 2
m.ScenNName = "Double the warehouse demands"
for w in warehouses:
    demandConstr[w].ScenNRhs = demand[w] * 2.0
# Scenario 3: Decrease the plant fixed costs by 5%
m.Params.ScenarioNumber = 3
m.ScenNName = "Decreased plant fixed costs"
for p in plants:
    open[p].ScenNObj = fixedCosts[p] * 0.95
# Scenario 4: Combine scenario 1 and scenario 3
m.Params.ScenarioNumber = 4
m.ScenNName = "Increased warehouse demands and decreased plant fixed costs"
for w in warehouses:
    demandConstr[w].ScenNRhs = demand[w] * 1.1
for p in plants:
    open[p].ScenNObj = fixedCosts[p] * 0.95
# Scenario 5: Force the plant with the largest fixed cost to stay open
m.Params.ScenarioNumber = 5
m.ScenNName = "Force plant with largest fixed cost to stay open"
open[fixedCosts.index(maxFixed)].ScenNLB = 1.0
# Scenario 6: Force the plant with the smallest fixed cost to be closed
m.Params.ScenarioNumber = 6
m.ScenNName = "Force plant with smallest fixed cost to be closed"
open[fixedCosts.index(minFixed)].ScenNUB = 0.0
# Save model
m.write("multiscenario.lp")
# Guess at the starting point: close the plant with the highest fixed costs;
# open all others
# First open all plants
for p in plants:
    open[p].Start = 1.0
# Now close the plant with the highest fixed cost
p = fixedCosts.index(maxFixed)
open[p].Start = 0.0
print(f"Initial guess: Closing plant {p}\n")
# Use barrier to solve root relaxation
m.Params.Method = 2
# Solve multi-scenario model
m.optimize()
# Print solution for each scenario
for s in range(m.NumScenarios):
    # Set the scenario number to query the information for this scenario
    m.Params.ScenarioNumber = s
    print(f"\n\n------ Scenario {s} ({m.ScenNName})")
    # Check if we found a feasible solution for this scenario
    if m.ModelSense * m.ScenNObjVal >= GRB.INFINITY:
        if m.ModelSense * m.ScenNObjBound >= GRB.INFINITY:
            # Scenario was proven to be infeasible
            print("\nINFEASIBLE")
        else:
            # We did not find any feasible solution - should not happen in
            # this case, because we did not set any limit (like a time
            # limit) on the optimization process
            print("\nNO SOLUTION")
    else:
        print(f"\nTOTAL COSTS: {m.ScenNObjVal:g}")
        print("SOLUTION:")
        for p in plants:
            if open[p].ScenNX > 0.5:
                print(f"Plant {p} open")
                for w in warehouses:
                    if transport[w, p].ScenNX > 0:
                        print(
                            f"  Transport {transport[w, p].ScenNX:g} units to warehouse {w}"
                        )
            else:
                print(f"Plant {p} closed!")
# Print a summary table: for each scenario we add a single summary line
print("\n\nSummary: Closed plants depending on scenario\n")
print(f"{'':8} | {'Plant':>17} {'|':>13}")
tableStr = [f"{'Scenario':8} |"]
tableStr += [f"{p:>5}" for p in plants]
tableStr += [f"| {'Costs':>6}  Name"]
print(" ".join(tableStr))
for s in range(m.NumScenarios):
    # Set the scenario number to query the information for this scenario
    m.Params.ScenarioNumber = s
    tableStr = f"{s:<8} |"
    # Check if we found a feasible solution for this scenario
    if m.ModelSense * m.ScenNObjVal >= GRB.INFINITY:
        if m.ModelSense * m.ScenNObjBound >= GRB.INFINITY:
            # Scenario was proven to be infeasible
            print(tableStr, f"{'infeasible':<30}| {'-':>6}  {m.ScenNName:<}")
        else:
            # We did not find any feasible solution - should not happen in
            # this case, because we did not set any limit (like a time
            # limit) on the optimization process
            print(tableStr, f"{'no solution found':<30}| {'-':>6}  {m.ScenNName:<}")
    else:
        for p in plants:
            if open[p].ScenNX > 0.5:
                tableStr += f" {' ':>5}"
            else:
                tableStr += f" {'x':>5}"
        print(tableStr, f"| {m.ScenNObjVal:6g}  {m.ScenNName:<}")
' Copyright 2025, Gurobi Optimization, LLC
' Facility location: a company currently ships its product from 5 plants
' to 4 warehouses. It is considering closing some plants to reduce
' costs. What plant(s) should the company close, in order to minimize
' transportation and fixed costs?
'
' Since the plant fixed costs and the warehouse demands are uncertain, a
' scenario approach is chosen.
'
' Note that this example is similar to the facility_vb.vb example. Here we
' added scenarios in order to illustrate the multi-scenario feature.
'
' Based on an example from Frontline Systems:
' http://www.solver.com/disfacility.htm
' Used with permission.
Imports System
Imports Gurobi
Class multiscenario_vb
   Shared Sub Main()
   Try
   ' Warehouse demand in thousands of units
   Dim Demand As Double() = New Double() {15, 18, 14, 20}
   ' Plant capacity in thousands of units
   Dim Capacity As Double() = New Double() {20, 22, 17, 19, 18}
   ' Fixed costs for each plant
   Dim FixedCosts As Double() = New Double() {12000, 15000, 17000, 13000, 16000}
   ' Transportation costs per thousand units
   Dim TransCosts As Double(,) = New Double(,) { {4000, 2000, 3000, 2500, 4500}, _
                                                 {2500, 2600, 3400, 3000, 4000}, _
                                                 {1200, 1800, 2600, 4100, 3000}, _
                                                 {2200, 2600, 3100, 3700, 3200}}
   ' Number of plants and warehouses
   Dim nPlants As Integer = Capacity.Length
   Dim nWarehouses As Integer = Demand.Length
   Dim maxFixed As Double = -GRB.INFINITY
   Dim minFixed As Double = GRB.INFINITY
   For p As Integer = 0 To nPlants - 1
      If FixedCosts(p) > maxFixed Then maxFixed = FixedCosts(p)
      If FixedCosts(p) < minFixed Then minFixed = FixedCosts(p)
   Next
   ' Model
   Dim env As GRBEnv = New GRBEnv()
   Dim model As GRBModel = New GRBModel(env)
   model.ModelName = "multiscenario"
   ' Plant open decision variables: open(p) == 1 if plant p is open.
   Dim open As GRBVar() = New GRBVar(nPlants - 1) {}
   For p As Integer = 0 To nPlants - 1
      open(p) = model.AddVar(0, 1, FixedCosts(p), GRB.BINARY, "Open" & p)
   Next
   ' Transportation decision variables: how much to transport from a plant
   ' p to a warehouse w
   Dim transport As GRBVar(,) = New GRBVar(nWarehouses - 1, nPlants - 1) {}
   For w As Integer = 0 To nWarehouses - 1
      For p As Integer = 0 To nPlants - 1
         transport(w, p) = model.AddVar(0, GRB.INFINITY, TransCosts(w, p), _
                                        GRB.CONTINUOUS, "Trans" & p & "." & w)
      Next
   Next
   ' The objective is to minimize the total fixed and variable costs
   model.ModelSense = GRB.MINIMIZE
   ' Production constraints
   ' Note that the right-hand limit sets the production to zero if
   ' the plant is closed
   For p As Integer = 0 To nPlants - 1
      Dim ptot As GRBLinExpr = 0.0
      For w As Integer = 0 To nWarehouses - 1
         ptot.AddTerm(1.0, transport(w, p))
      Next
      model.AddConstr(ptot <= Capacity(p) * open(p), "Capacity" & p)
   Next
   ' Demand constraints
   Dim demandConstr As GRBConstr() = New GRBConstr(nWarehouses - 1) {}
   For w As Integer = 0 To nWarehouses - 1
      Dim dtot As GRBLinExpr = 0.0
      For p As Integer = 0 To nPlants - 1
         dtot.AddTerm(1.0, transport(w, p))
      Next
      demandConstr(w) = model.AddConstr(dtot = Demand(w), "Demand" & w)
   Next
   ' We constructed the base model, now we add 7 scenarios
   '
   ' Scenario 0: Represents the base model, hence, no manipulations.
   ' Scenario 1: Manipulate the warehouses demands slightly (constraint right
   '             hand sides).
   ' Scenario 2: Double the warehouses demands (constraint right hand sides).
   ' Scenario 3: Manipulate the plant fixed costs (objective coefficients).
   ' Scenario 4: Manipulate the warehouses demands and fixed costs.
   ' Scenario 5: Force the plant with the largest fixed cost to stay open
   '             (variable bounds).
   ' Scenario 6: Force the plant with the smallest fixed cost to be closed
   '             (variable bounds).
   model.NumScenarios = 7
   ' Scenario 0: Base model, hence, nothing to do except giving the
   '             scenario a name
   model.Parameters.ScenarioNumber = 0
   model.ScenNName = "Base model"
   ' Scenario 1: Increase the warehouse demands by 10%
   model.Parameters.ScenarioNumber = 1
   model.ScenNName = "Increased warehouse demands"
   For w As Integer = 0 To nWarehouses - 1
      demandConstr(w).ScenNRHS = Demand(w) * 1.1
   Next
   ' Scenario 2: Double the warehouse demands
   model.Parameters.ScenarioNumber = 2
   model.ScenNName = "Double the warehouse demands"
   For w As Integer = 0 To nWarehouses - 1
      demandConstr(w).ScenNRHS = Demand(w) * 2.0
   Next
   ' Scenario 3: Decrease the plant fixed costs by 5%
   model.Parameters.ScenarioNumber = 3
   model.ScenNName = "Decreased plant fixed costs"
   For p As Integer = 0 To nPlants - 1
      open(p).ScenNObj = FixedCosts(p) * 0.95
   Next
   ' Scenario 4: Combine scenario 1 and scenario 3 */
   model.Parameters.ScenarioNumber = 4
   model.ScenNName = "Increased warehouse demands and decreased plant fixed costs"
   For w As Integer = 0 To nWarehouses - 1
      demandConstr(w).ScenNRHS = Demand(w) * 1.1
   Next
   For p As Integer = 0 To nPlants - 1
      open(p).ScenNObj = FixedCosts(p) * 0.95
   Next
   ' Scenario 5: Force the plant with the largest fixed cost to stay
   '             open
   model.Parameters.ScenarioNumber = 5
   model.ScenNName = "Force plant with largest fixed cost to stay open"
   For p As Integer = 0 To nPlants - 1
      If FixedCosts(p) = maxFixed Then
         open(p).ScenNLB = 1.0
         Exit For
      End If
   Next
   ' Scenario 6: Force the plant with the smallest fixed cost to be
   '             closed
   model.Parameters.ScenarioNumber = 6
   model.ScenNName = "Force plant with smallest fixed cost to be closed"
   For p As Integer = 0 To nPlants - 1
      If FixedCosts(p) = minFixed Then
         open(p).ScenNUB = 0.0
         Exit For
      End If
   Next
   ' Guess at the starting point: close the plant with the highest fixed
   ' costs; open all others
   ' First, open all plants
   For p As Integer = 0 To nPlants - 1
      open(p).Start = 1.0
   Next
   ' Now close the plant with the highest fixed cost
   Console.WriteLine("Initial guess:")
   For p As Integer = 0 To nPlants - 1
      If FixedCosts(p) = maxFixed Then
         open(p).Start = 0.0
         Console.WriteLine("Closing plant " & p & vbLf)
         Exit For
      End If
   Next
   ' Use barrier to solve root relaxation
   model.Parameters.Method = GRB.METHOD_BARRIER
   ' Solve multi-scenario model
   model.Optimize()
   Dim nScenarios As Integer = model.NumScenarios
   For s As Integer = 0 To nScenarios - 1
      Dim modelSense As Integer = GRB.MINIMIZE
      ' Set the scenario number to query the information for this scenario
      model.Parameters.ScenarioNumber = s
      ' collect result for the scenario
      Dim scenNObjBound As Double = model.ScenNObjBound
      Dim scenNObjVal As Double = model.ScenNObjVal
      Console.WriteLine(vbLf & vbLf & "------ Scenario " & s & " (" & model.ScenNName & ")")
      ' Check if we found a feasible solution for this scenario
      If modelSense * scenNObjVal >= GRB.INFINITY Then
         If modelSense * scenNObjBound >= GRB.INFINITY Then
            ' Scenario was proven to be infeasible
            Console.WriteLine(vbLf & "INFEASIBLE")
         Else
            ' We did not find any feasible solution - should not happen in
            ' this case, because we did not set any limit (like a time
            ' limit) on the optimization process
            Console.WriteLine(vbLf & "NO SOLUTION")
         End If
      Else
         Console.WriteLine(vbLf & "TOTAL COSTS: " & scenNObjVal)
         Console.WriteLine("SOLUTION:")
         For p As Integer = 0 To nPlants - 1
            Dim scenNX As Double = open(p).ScenNX
            If scenNX > 0.5 Then
               Console.WriteLine("Plant " & p & " open")
               For w As Integer = 0 To nWarehouses - 1
                  scenNX = transport(w, p).ScenNX
                  If scenNX > 0.0001 Then Console.WriteLine("  Transport " & scenNX & " units to warehouse " & w)
               Next
            Else
               Console.WriteLine("Plant " & p & " closed!")
            End If
         Next
      End If
   Next
   ' Print a summary table: for each scenario we add a single summary line
   Console.WriteLine(vbLf & vbLf & "Summary: Closed plants depending on scenario" & vbLf)
   Console.WriteLine("{0,8} | {1,17} {2,13}", "", "Plant", "|")
   Console.Write("{0,8} |", "Scenario")
   For p As Integer = 0 To nPlants - 1
      Console.Write("{0,6}", p)
   Next
   Console.WriteLine(" | {0,6}  Name", "Costs")
   For s As Integer = 0 To nScenarios - 1
      Dim modelSense As Integer = GRB.MINIMIZE
      ' Set the scenario number to query the information for this scenario
      model.Parameters.ScenarioNumber = s
      ' Collect result for the scenario
      Dim scenNObjBound As Double = model.ScenNObjBound
      Dim scenNObjVal As Double = model.ScenNObjVal
      Console.Write("{0,-8} |", s)
      ' Check if we found a feasible solution for this scenario
      If modelSense * scenNObjVal >= GRB.INFINITY Then
         If modelSense * scenNObjBound >= GRB.INFINITY Then
            ' Scenario was proven to be infeasible
            Console.WriteLine(" {0,-30}| {1,6}  " & model.ScenNName, "infeasible", "-")
         Else
            ' We did not find any feasible solution - should not happen in
            ' this case, because we did not set any limit (like a Time
            ' limit) on the optimization process
            Console.WriteLine(" {0,-30}| {1,6}  " & model.ScenNName, "no solution found", "-")
         End If
      Else
         For p As Integer = 0 To nPlants - 1
            Dim scenNX As Double = open(p).ScenNX
            If scenNX > 0.5 Then
               Console.Write("{0,6}", " ")
            Else
               Console.Write("{0,6}", "x")
            End If
         Next
         Console.WriteLine(" | {0,6}  " & model.ScenNName, scenNObjVal)
      End If
   Next
   model.Dispose()
   env.Dispose()
   Catch e As GRBException
   Console.WriteLine("Error code: " & e.ErrorCode & ". " + e.Message)
   End Try
End Sub
End Class