bilinear_cs.cs#
/* Copyright 2024, Gurobi Optimization, LLC */
/* This example formulates and solves the following simple bilinear model:
maximize x
subject to x + y + z <= 10
x * y <= 2 (bilinear inequality)
x * z + y * z == 1 (bilinear equality)
x, y, z non-negative (x integral in second version)
*/
using System;
using Gurobi;
class bilinear_cs
{
static void Main()
{
try {
GRBEnv env = new GRBEnv("bilinear.log");
GRBModel model = new GRBModel(env);
// Create variables
GRBVar x = model.AddVar(0.0, GRB.INFINITY, 0.0, GRB.CONTINUOUS, "x");
GRBVar y = model.AddVar(0.0, GRB.INFINITY, 0.0, GRB.CONTINUOUS, "y");
GRBVar z = model.AddVar(0.0, GRB.INFINITY, 0.0, GRB.CONTINUOUS, "z");
// Set objective
GRBLinExpr obj = x;
model.SetObjective(obj, GRB.MAXIMIZE);
// Add linear constraint: x + y + z <= 10
model.AddConstr(x + y + z <= 10, "c0");
// Add bilinear inequality: x * y <= 2
model.AddQConstr(x*y <= 2, "bilinear0");
// Add bilinear equality: x * z + y * z == 1
model.AddQConstr(x*z + y*z == 1, "bilinear1");
// Optimize model
try {
model.Optimize();
} catch (GRBException e) {
Console.WriteLine("Failed (as expected) " + e.ErrorCode + ". " + e.Message);
}
model.Set(GRB.IntParam.NonConvex, 2);
model.Optimize();
Console.WriteLine(x.VarName + " " + x.X);
Console.WriteLine(y.VarName + " " + y.X);
Console.WriteLine(z.VarName + " " + z.X);
Console.WriteLine("Obj: " + model.ObjVal + " " + obj.Value);
x.Set(GRB.CharAttr.VType, GRB.INTEGER);
model.Optimize();
Console.WriteLine(x.VarName + " " + x.X);
Console.WriteLine(y.VarName + " " + y.X);
Console.WriteLine(z.VarName + " " + z.X);
Console.WriteLine("Obj: " + model.ObjVal + " " + obj.Value);
// Dispose of model and env
model.Dispose();
env.Dispose();
} catch (GRBException e) {
Console.WriteLine("Error code: " + e.ErrorCode + ". " + e.Message);
}
}
}