# Copyright 2024, Gurobi Optimization, LLC
#
# Assign workers to shifts; each worker may or may not be available on a
# particular day. If the problem cannot be solved, relax the model
# to determine which constraints cannot be satisfied, and how much
# they need to be relaxed.
library(Matrix)
library(gurobi)
# Function to display results
printsolution <- function(result) {
if(result$status == 'OPTIMAL') {
cat('The optimal objective is',result$objval,'\n')
cat('Schedule:\n')
for (s in 1:nShifts) {
cat('\t',Shifts[s],':')
for (w in 1:nWorkers) {
if (result$x[varIdx(w,s)] > 0.9) cat(Workers[w],' ')
}
cat('\n')
}
}
}
# define data
nShifts <- 14
nWorkers <- 7
nVars <- nShifts * nWorkers
varIdx <- function(w,s) {s+(w-1)*nShifts}
Shifts <- c('Mon1', 'Tue2', 'Wed3', 'Thu4', 'Fri5', 'Sat6', 'Sun7',
'Mon8', 'Tue9', 'Wed10', 'Thu11', 'Fri12', 'Sat13', 'Sun14')
Workers <- c( 'Amy', 'Bob', 'Cathy', 'Dan', 'Ed', 'Fred', 'Gu' )
pay <- c(10, 12, 10, 8, 8, 9, 11 )
shiftRequirements <- c(3, 2, 4, 4, 5, 6, 5, 2, 2, 3, 4, 6, 7, 5 )
availability <- list( c( 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1 ),
c( 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0 ),
c( 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1 ),
c( 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1 ),
c( 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1 ),
c( 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1 ),
c( 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ) )
# Set up parameters
params <- list()
params$logfile <- 'workforce3.log'
# Build model
model <- list()
model$modelname <- 'workforce3'
model$modelsense <- 'min'
# Initialize assignment decision variables:
# x[w][s] == 1 if worker w is assigned
# to shift s. Since an assignment model always produces integer
# solutions, we use continuous variables and solve as an LP.
model$lb <- 0
model$ub <- rep(1, nVars)
model$obj <- rep(0, nVars)
model$varnames <- rep('',nVars)
for (w in 1:nWorkers) {
for (s in 1:nShifts) {
model$varnames[varIdx(w,s)] = paste0(Workers[w],'.',Shifts[s])
model$obj[varIdx(w,s)] = pay[w]
if (availability[[w]][s] == 0) model$ub[varIdx(w,s)] = 0
}
}
# Set up shift-requirements constraints
model$A <- spMatrix(nShifts,nVars,
i = c(mapply(rep,1:nShifts,nWorkers)),
j = mapply(varIdx,1:nWorkers,
mapply(rep,1:nShifts,nWorkers)),
x = rep(1,nShifts * nWorkers))
model$sense <- rep('=',nShifts)
model$rhs <- shiftRequirements
model$constrnames <- Shifts
# Save model
gurobi_write(model,'workforce3.lp', params)
# Optimize
result <- gurobi(model, params = params)
# Display results
if (result$status == 'OPTIMAL') {
# The code may enter here if you change some of the data... otherwise
# this will never be executed.
printsolution(result);
} else if (result$status == 'INFEASIBLE') {
# Use gurobi_feasrelax to find out which copnstraints should be relaxed
# and by how much to make the problem feasible.
penalties <- list()
penalties$lb <- Inf
penalties$ub <- Inf
penalties$rhs <- rep(1,length(model$rhs))
feasrelax <- gurobi_feasrelax(model, 0, FALSE, penalties, params = params)
result <- gurobi(feasrelax$model, params = params)
if (result$status == 'OPTIMAL') {
printsolution(result)
cat('Slack values:\n')
for (j in (nVars+1):length(result$x)) {
if(result$x[j] > 0.1)
cat('\t',feasrelax$model$varnames[j],result$x[j],'\n')
}
} else {
cat('Unexpected status',result$status,'\nEnding now\n')
}
rm(penalties, feasrelax)
} else {
# Just to handle user interruptions or other problems
cat('Unexpected status',result$status,'\nEnding now\n')
}
#Clear space
rm(model, params, availability, Shifts, Workers, pay, shiftRequirements, result)